2,100 research outputs found

    Channel selection requirements for Bluetooth receivers using a simple demodulation algorithm

    Get PDF
    In our Software Defined Radio (SDR) project we combine two different types of standards, Bluetooth and HiperLAN/2, on one common hardware platform. SDR system research aims at the design, implementation and deployment of flexible radio systems that are reprogrammable and re-configurable by software. Goal of our project is to generate knowledge about designing the front end of an SDR system (from the antenna signal to the channel bit stream) where especially an approach from both analog and digital perspective is essential. This paper discusses the channel selection requirements for the Bluetooth standard. The standard specifications specify only the power level of the interferers, the power level of the wanted signal and the maximum allowed Bit Error Rate (BER). In order to build a radio front-end, one has to know the required (channel) suppression of these interferers. From [1] it is known that the required SNR for a Bluetooth demodulator is 21 dB, but by which value should interferers be suppressed? This paper will validate if the SNR value needs to be used for the suppression of adjacent channels. In order to answer this question a simulation model of a Bluetooth radio front-end is built

    Low-complexity high-performance GFSK receiver with carrier frequency offset correction

    Get PDF
    This paper presents an implementation of a GFSK receiver based on matched filtering of a sequence of K successive bits. This enables improved detection and superior BER performance but requires 2K matched filters of considerable complexity. Exploiting redundancy by performing phase propagation of successive single-bit stages, we propose an efficient receiver implementation. Results presented highlight the benefits of the proposed methd in terms of computational cost and performance compared to standard methods. We also address carrier frequency offset, and suggest a blind algorithm for its elimination. Performance results are exemplarily shown for a Bluetooth system

    A (Simplified) Bluetooth Maximum a Posteriori Probability (Map) Receiver

    Get PDF
    In our software-defined radio project, we aim at combining two standards luetooth and HIPERLAN/2. The HIPERLAN/2 receiver requires more computational power than Bluetooth. We choose to use this computational power also for Bluetooth and look for more advanced demodulation algorithms such as a maximum a posteriori probability (MAP) receiver. The paper discusses a simplified MAP receiver for Bluetooth GFSK signals. Laurent decomposition provides an orthogonal vector space for the MAP receiver. As the first Laurent waveform contains the most energy, we have used only this waveform for our (simplified) MAP receiver. This receiver requires a E/sub b//N/sub 0/ of about 11 dB for a BER of 10/sup -3/, required by the Bluetooth standard. This value is about 6 dB better than single bit demodulators. This performance is only met if the receiver has exact knowledge of the modulation index

    A Real-Time GPP Software-Defined Radio Testbed for the Physical Layer of Wireless Standards

    Get PDF
    We present our contribution to the general-purpose-processor-(GPP)-based radio. We describe a baseband software-defined radio testbed for the physical layer of wireless LAN standards. All physical layer functions have been successfully mapped on a Pentium 4 processor that performs these functions in real time. The testbed consists of a transmitter PC with a DAC board and a receiver PC with an ADC board. In our project, we have implemented two different types of standards on this testbed, a continuous-phase-modulation-based standard, Bluetooth, and an OFDM-based standard, HiperLAN/2. However, our testbed can easily be extended to other standards, because the only limitation in our testbed is the maximal channel bandwidth of 20 MHz and of course the processing capabilities of the used PC. The transmitter functions require at most 714 M cycles per second and the receiver functions need 1225 M cycles per second on a Pentium 4 processor. In addition, baseband experiments have been carried out successfully

    Resonant-state-expansion Born approximation for waveguides with dispersion

    Get PDF
    The resonant-state expansion (RSE) Born approximation, a rigorous perturbative method developed for electrodynamic and quantum mechanical open systems, is further developed to treat waveguides with a Sellmeier dispersion. For media that can be described by these types of dispersion over the relevant frequency range, such as optical glass, I show that the perturbed RSE problem can be solved by diagonalizing a second-order eigenvalue problem. In the case of a single resonance at zero frequency, this is simplified to a generalized eigenvalue problem. Results are presented using analytically solvable planar waveguides and parameters of borosilicate BK7 glass, for a perturbation in the waveguide width. The efficiency of using either an exact dispersion over all frequencies or an approximate dispersion over a narrow frequency range is compared. I included a derivation of the RSE Born approximation for waveguides to make use of the resonances calculated by the RSE, an RSE extension of the well-known Born approximation.Comment: BEST VERSION OF THIS ARTICL

    A Novel Three-Point Modulation Technique for Fractional-N Frequency Synthesizer Applications

    Get PDF
    This paper presents a novel three-point modulation technique for fractional-N frequency synthesizer applications. Convention modulated fractional-N frequency synthesizers suffer from quantization noise, which degrades not only the phase noise performance but also the modulation quality. To solve this problem, this work proposes a three-point modulation technique, which not only cancels the quantization noise, but also markedly boosts the channel switching speed. Measurements reveal that the implemented 2.4 GHz fractional-N frequency synthesizer using three-point modulation can achieve a 2.5 Mbps GFSK data rate with an FSK error rate of only 1.4 %. The phase noise is approximately -98 dBc/Hz at a frequency offset of 100 kHz. The channel switching time is only 1.1 μs with a frequency step of 80 MHz. Comparing with conventional two-point modulation, the proposed three-point modulation greatly improves the FSK error rate, phase noise and channel switching time by about 10 %, 30 dB and 126 μs, respectively
    corecore