4 research outputs found

    GES long baseline navigation with unknown sound velocity and discrete-time range measurements

    No full text

    Nonlinear Observer for Tightly Integrated Inertial Navigation Aided by Pseudo-Range Measurements

    Get PDF
    A modular nonlinear observer for inertial navigation aided by pseudo-range measurements is designed and analyzed. The attitude observer is based on a recent nonlinear complementary filter that uses magnetometer and accelerometer vector measurements to correct the quaternion attitude estimate driven by gyro measurements, including gyro bias estimation. A tightly integrated translational motion observer is driven by accelerometer measurements, employs the attitude estimates, and makes corrections using the pseudo-range and range-rate measurements. It estimates position, range bias errors, velocity and specific force in an earth-fixed Cartesian coordinate frame, where the specific force estimate is used as a reference vector for the accelerometer measurements in the attitude observer. The exponential stability of the feedback interconnection of the two observers is analyzed and found to have a semiglobal region of attraction with respect to the attitude observer initialization and local region of attraction with respect to translational motion observer initialization. The latter is due to linearization of the range measurement equations that is underlying the selection of injection gains by solving a Riccati equation. In typical applications, the pseudo-range equations admit an explicit algebraic solution that can be easily computed and used to accurately initialize the position and velocity estimates. Hence, the limited region of attraction is not seen as a practical limitation of the approach for many applications. Advantages of the proposed nonlinear observer are low computational complexity and a solid theoretical foundation

    Internet of Underwater Things and Big Marine Data Analytics -- A Comprehensive Survey

    Full text link
    The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a midsized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this paper is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed.Comment: 54 pages, 11 figures, 19 tables, IEEE Communications Surveys & Tutorials, peer-reviewed academic journa

    Deep learning for internet of underwater things and ocean data analytics

    Get PDF
    The Internet of Underwater Things (IoUT) is an emerging technological ecosystem developed for connecting objects in maritime and underwater environments. IoUT technologies are empowered by an extreme number of deployed sensors and actuators. In this thesis, multiple IoUT sensory data are augmented with machine intelligence for forecasting purposes
    corecore