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Nonlinear Observer for Tightly
Integrated Inertial Navigation
Aided by Pseudo-Range
Measurements
A modular nonlinear observer for inertial navigation aided by pseudo-range measure-
ments is designed and analyzed. The attitude observer is based on a recent nonlinear
complementary filter that uses magnetometer and accelerometer vector measurements to
correct the quaternion attitude estimate driven by gyro measurements, including gyro
bias estimation. A tightly integrated translational motion observer is driven by acceler-
ometer measurements, employs the attitude estimates, and makes corrections using the
pseudo-range and range-rate measurements. It estimates position, range bias errors,
velocity and specific force in an earth-fixed Cartesian coordinate frame, where the spe-
cific force estimate is used as a reference vector for the accelerometer measurements in
the attitude observer. The exponential stability of the feedback interconnection of the two
observers is analyzed and found to have a semiglobal region of attraction with respect to
the attitude observer initialization and local region of attraction with respect to transla-
tional motion observer initialization. The latter is due to linearization of the range mea-
surement equations that is underlying the selection of injection gains by solving a Riccati
equation. In typical applications, the pseudo-range equations admit an explicit algebraic
solution that can be easily computed and used to accurately initialize the position and
velocity estimates. Hence, the limited region of attraction is not seen as a practical limi-
tation of the approach for many applications. Advantages of the proposed nonlinear
observer are low computational complexity and a solid theoretical foundation.
[DOI: 10.1115/1.4034496]

1 Introduction

Range measurement is the basis for global satellite navigation
systems, hydro-acoustic positioning systems, terrestrial radio navi-
gation, and other positioning systems. Such systems commonly
detect the time-of-arrival (TOA) of signals encoded in the electro-
magnetic or acoustic waves to estimate the range and are therefore
prone to systematic errors such as clock synchronization errors or
uncertain wave speed. Since they do not directly measure the true
geometric range, they are often called pseudo-range measurements.

Inertial sensors such as accelerometer and gyros can be used to
estimate the position and velocity by integrating the kinematic
equation. Since biases and other errors are accumulated in this
process, leading to unbounded errors on the estimates, inertial
navigation systems are usually aided by a range measurements
that can be used to stabilize these errors using a state estimator.
There are two main design philosophies for these such estimators:
loosely and tightly coupled integration [1–3]. In a loosely inte-
grated scheme, a standalone estimator for position and velocity in
an earth-fixed Cartesian reference coordinate frame is first made
using only the pseudo-range measurements. These position and
velocity estimates are in turn used as measurements in a state
observer that integrates them with the inertial measurements. In a
tightly integrated scheme, the pseudo-range measurements are
used directly in the state observer together with the inertial meas-
urements. While the advantage of the loosely coupled integration
is a high degree of modularity, the advantage of tight integration
is increased with accuracy and fault tolerance, in particular in sit-
uations with highly accelerated vehicles and few range measure-
ments, weak or noisy signals, unknown wave speed, poor

transponder geometry, or other anomalies, e.g., see Refs. [1] and
[2]. More accurate models of measurement errors can be used in
the integration filter and a reduced number of pseudo-range
measurements can be used for aiding when a standalone position
estimate cannot be determined [1–3].

The state-of-the-art method for real-time fusion of the data from
the individual sensors are nonlinear versions of the Kalman-filter
(KF) [1,2,4] including the extended KF, unscented KF, particle fil-
ter, and specially tailored variants such as the multiplicative KF for
attitude estimation using quaternions [5,6]. While the KF is a gen-
eral method that has found extremely wide applicability, it has some
drawbacks. This includes the relatively high computational cost and
a rather implicit and not so easily verifiable convergence properties
that may require advanced supervisory functions and accurate initi-
alization [7]. Its major advantages are flexibility in tuning and appli-
cation, as it is a widely known and used technology with intuitive
and physically motivated tuning parameters interpreted as noise
covariances, and providing certain optimality guarantees.

Our objective is to develop a low-complexity nonlinear
observer for inertial navigation aided by a magnetometer and
pseudo-range measurements, where the observer has properties
founded on stability theory. The nonlinear observer structure is
inspired by Grip et al. [8], where a loose integration between
global navigation satellite system (GNSS) position/velocity meas-
urements and inertial measurements was derived with semiglobal
asymptotic stability conditions. Its extension to tightly integrated
inertial navigation is nontrivial, since the measurement equations
are nonlinear when considering pseudo-range and range-rate
measurements for aiding, instead of being linear when position
and velocity estimates in an earth-fixed Cartesian coordinate
frame are used for aiding.

A similar research objective is pursued in the series of articles
represented by Batista and coworkers [9–14]. Using a state trans-
formation and a state augmentation they derive a linear time-
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varying (LTV) model which is closely related to the nonlinear
model, and use this for the design of an estimator for attitude,
position, and velocity using hydro-acoustic range measurements.
In slight contrast, our objective is to avoid unnecessary computa-
tional complexity.

We base the design philosophy on the assumption that the line-
of-sight (LOS) vectors between the vehicle and the used trans-
ponders1 are relatively slowly time-varying. This is a good
assumption in many practical situations, such as terrestrial naviga-
tion using satellites and surface ship positioning in deep waters
using hydro-acoustic transponders at the seabed. In this case,
time-varying observer gains multiplying pseudo-range and range-
rate errors in the injection terms can be designed to shape the
dynamics of the observer using a time-varying linearized relation-
ship between the range and vehicle position. Using the semiglo-
bally exponentially stable nonlinear attitude observer of Mahoney
et al. [15], see also Refs. [8] and [16], we do not use a KF in the
observer, but a slowly time-varying Riccati equation for gain
matrix updates to the translational motion observer is employed.
This allows the integration of the Riccati equation to be performed
on a slower time-scale corresponding to the relative geometric
configuration of the transponders and the receiver, or even solved
periodically at low rate as an algebraic Riccati equation. This
ensures low computational complexity, and a rigorous analysis of
the observer error dynamics stability is made in the paper.

A short and preliminary version of this paper is presented in
Ref. [17], and some recent contributions by the authors are found
in Refs. [18] and [19].

1.1 Outline. This paper is organized as follows: models and
preliminaries are described in Sec. 2. This includes existence,
uniqueness, and computation of algebraic solution to the pseudo-
range equations. In Sec. 3, we present observers for attitude and
translational motion, and analyze the stability of their interconnec-
tions. The method is compared to a multiplicative-extended-Kal-
man-filter (MEKF) using the experimental pseudo-range
measurements to illustrate the methods in Sec. 4, and conclusions
are made in Sec. 5.

1.2 Notation. We use jj � jj2 for the Euclidean vector norm,
jj � jj for the induced matrix norm, and denoted by (z1; z2) the col-
umn vector with the vector z1 stacked over the vector z2. We
denote by In the identity matrix of dimension n, and we use zero
to symbolize a matrix of zeros, where the dimensions are implic-
itly given by the context. Moreover, � denotes the Kronecker
product between the two matrices, and for simplicity of notation,
we usually let time dependence be implicit.

A unit quaternion q ¼ sq; rqð Þ with jjqjj2 ¼ 1 consists of a sca-

lar part sq 2 R and a vector part rq 2 R3. For a vector x 2 R3,
we denote by �x the quaternion with zero real part and vector part
x, i.e., �x ¼ 0; xð Þ. The conjugate of a quaternion q is denoted q*,
and the product of two quaternions is the Hamilton quaternion

product. For a vector x 2 R3, we define the skew-symmetric
matrix

S xð Þ ¼
0 �x3 x2

x3 0 �x1

�x2 x1 0

0
@

1
A

We may use a superscript index to indicate the coordinate system
in which a given vector is decomposed, thus, xa and xb refers to
the same vector decomposed in the coordinated systems indexed
by a and b, respectively. The rotation from coordinate frame a to
coordinate frame b may be represented by a quaternion qb

a. The
corresponding rotation matrix is denoted R qb

a

� �
. The rate of rota-

tion of the coordinate system indexed by b with respect to a,

decomposed in c, is denoted xc
ab. We use e for the earth-centered

earth-fixed (ECEF) coordinate system, b for the vehicle BODY-
fixed coordinate system, and i for the earth-centered inertial (ECI)
coordinate system.

2 Models and Preliminaries

2.1 Vehicle Kinematics. The vehicle model is given by

_pe ¼ ve (1)

_ve ¼ �2S xe
ie

� �
ve þ f e þ ge peð Þ (2)

_qe
b ¼

1

2
qe

b �xb
ib �

1

2
�xe

ieqe
b (3)

where pe, ve; f e 2 R3 are the position, linear velocity, and specific
force in ECEF, respectively. The attitude of the vehicle is repre-
sented by a unit quaternion qe

b. It represents the rotation from
BODY to ECEF, and xb

ib represents the rotation rate of BODY
with respect to ECI. The known vector xe

ie represents the Earth’s
rotation rate about the ECEF z-axis, and ge peð Þ denotes the
plumb-bob gravity vector.

2.2 Measurement Models. The inertial sensor model is
based on the strapdown assumption, i.e., the inertial measurement
unit (IMU) is fixed to the BODY frame and gives measurements
f b
IMU ¼ f b and xb

ib;IMU ¼ xb
ib þ bb, where bb 2 R3 denotes the rate

gyro bias that is assumed to satisfy jjbbjj2 � Mb for some known
bound Mb and is slowly time-varying

_b
b ¼ 0 (4)

It is assumed that any accelerometer bias and drift is compensated
for. The magnetometer measures the direction of the three-
dimensional earth magnetic vector field mb

mag ¼ mb.
Range measurements are typically generated by measuring the

TOA of known signal waveforms (acoustic or electromagnetic).
Due to errors in clock synchronization and wave propagation
velocity, such measurements often contain systematic errors
(biases) in addition to random errors, e.g., see Ref. [20], and must
therefore be treated as pseudo-range measurements. The range
measurement model is

yi ¼ qi þ fT
i b; qi ¼ jjpe � pe

i jj2 (5)

for i¼ 1, 2,…,m, where yi is a (pseudo-)range measurement, pe
i is

the known position of the i-th transponder, m is the number of
transponders, qi is the geometric range, b 2 Rn is a vector of
range error model parameters (biases) to be estimated, and the
coefficient vector fi describes the influence of each element of b
on pseudo-range measurement yi. This framework allows both
individual and common mode slowly time-varying errors such as
receiver clock bias (i.e., fi ¼ 1 and b :¼ cDc, where Dc is the
clock bias, and c is the wave speed) or wave speed variations to
be taken into account

_b ¼ 0 (6)

Note that _b ¼ 0 is the classical constant parameter assumption in
adaptive estimation and does not prevent us from estimating a
slowly time-varying b in practice. Also note that in Ref. [18] the
model €b ¼ 0 is applied instead.

Range-rate measurements are usually found by considering
Doppler-shift or tracking of features or codes in signals. Also here
there may be systematic (bias) errors in some cases, depending on
the sensor principle and technology. The range-rate (speed) mea-
surement model is given by

1Note that we use the term transponder as a general concept that also includes
navigation satellites in space, for example.
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�i ¼
1

qi

pe � pe
i

� �T
ve � ve

i

� �
þ uT

i b (7)

where �i is the relative range-rate measurement, the coefficient
vector ui describes the effect of each element of b on range speed
measurement �i, and we define ve

i :¼ _pe
i . Equation (7) follows

from time-differentiation of Eq. (5), assuming an independent
error model. Hence, we use the term uT

i b instead of fT
i

_b in Eq. (7)
since it provides additional flexibility in modeling.

2.3 Algebraic Range and Pseudo-Range Solutions. Despite
the nonlinear form of the pseudo-range measurement Eq. (5), we
can use its quadratic structure to get a relatively simple algebraic
solution [20–23]. Assume an arbitrary reference position p̂e is
given, and define LOS vectors �pe

i :¼ p̂e � pe
i for every i. The fol-

lowing explicit procedure can be used to determine a position
estimate.

LEMMA 1. Assume we have available pseudo-range measure-
ments y1; y2; y3, and y4 where the three first-transponder line-of-
sight vectors �pe

1; �pe
2, and �pe

3 are linearly independent, and

y4 6¼ y1; y2; y3ð Þ �A
�1

�pe
4 (8)

where �A ¼ �pe
1 �pe

2 �pe
3

� �
. Assume fi ¼ 1 for all i¼ 1, 2, 3, 4

(i.e., a single common mode error parameter b 2 R), then pe ¼
p̂e þ ~pe is derived from z ¼ ~pe; bð Þ where

z ¼ �r �u þ �v

2
; �u ¼ Â

�T
�e; �v ¼ Â

�T �b

�r ¼
�2� �uTM�v6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ �uTM�vð Þ2 � �uTM�u � �vTM�v

q
�uTM�u

where �e ¼ 1; 1; 1; 1ð Þ; �b 2 R4 has components �bi ¼ y2
i � jj�pe

i jj
2
2;

M ¼ diag 1; 1; 1;�1ð Þ, and

Â ¼ �pe
1 �pe

2 �pe
3 �pe

4

y1 y2 y3 y4

� �

Proof. The proof is similar to those found in Refs. [20–23]. w

The computations are analytical, and the most complex opera-
tions are the inversion of a 4� 4-matrix as well as the square-root
computation. We note that there are in general two solutions. This
ambiguity can be solved in several ways. For example, by using
five or more pseudo-range measurements, the problem can be
solved directly from a linear equation, cf. [20–23]. Ambiguity
may also be resolved using domain knowledge. One example is
terrestrial navigation when there is a large distance to the naviga-
tion satellites such that nonterrestrial solutions for the vehicle
position can be ruled out. Another example is underwater naviga-
tion where all the transponders are located on the seabed, and the
vehicle is at the surface or at some distance from the seabed such
that the positions below the seabed can be ruled out. Additional
sensors, e.g., depth or altitude can also be used directly to select
the correct solution.

Remark 1. The velocity can be estimated by solving a linear
problem by inserting the position and bias parameter estimates in
the measurement Eq. (7).

Remark 2. If the condition (8) does not hold, the null-space of
Â is given by y4bþ y1; y2; y3ð Þ�pe

4 ¼ 0. Solutions for pe may be
estimated by fixing b, or solved using another measurement if
available.

Remark 3. With an error model that requires a vector b 2 Rn

rather than a scalar b, the solution may require more than four
measurements and up to n-coupled quadratic equations to be
solved, possibly leading to additional ambiguity. A related exam-
ple is the carrier-phase measurements, where additional unknown
integer variables are introduced [19].

In the typical range-measurements systems, the remaining mea-
surement errors are typically so small that a good position and
velocity initialization of an observer can be found using Lemma 1
such that a relatively small region of attraction with respect to posi-
tion, velocity, and bias parameter initialization error can be
accepted.

We have chosen to consider only the effect of slowly time-
varying systematic errors (parameterized by b), such as biases, in
this presentation and analysis. Rapidly varying errors such as noise
can possibly be handled by appropriate tuning of the gains and may
not influence the structure of the observer. In some cases, better esti-
mation accuracy can be achieved by further modeling of the errors
using, e.g., Markov-like models, which are straightforward to
include in the proposed framework by augmenting the translational
motion observer with the new states, see Ref. [18] for more details.

3 Nonlinear Observer

The overall structure of the observer is given in Fig. 1. Sections
3.1 and 3.2 describe the two main modules, i.e., the attitude
observer and the translational motion observer. In addition, the
initialization based on the algebraic pseudo-range solver was pre-
sented in Sec. 2.3, and the Riccati solution and gain computation
were presented in Sec. 3.3.

3.1 Attitude Observer. We use the attitude observer from
Refs. [15,16]

_̂q
e

b ¼
1

2
q̂e

b �xb
ib;IMU �

�̂
b

b
þ �̂r

� �
� 1

2
�xe

ieq̂e
b (9)

_̂b
b

¼ Proj �kIr̂; jjb̂
bjj2 � Mb̂

� �
(10)

r̂ ¼ k1mb
mag � R q̂e

b

� �T
me þ k2f b

IMU � R q̂e
b

� �T
satMf

f̂
e� �

(11)

where xe
ie and me are assumed known. Proj �ð Þ is a projection oper-

ator that ensures
						b̂b

						
2
� Mb̂ with Mb̂ > Mb, see Ref. [8]. More-

over, satMf
�ð Þ is a saturation operator, with Mf such that

jjf ejj2 � Mf . The QUEST algorithm [24] may be used for initiali-
zation of the attitude.

The estimation error is defined as ~q ¼ qe
bq̂e�

b and ~b
b ¼ bb � b̂

b
,

and we define v ¼ ~s; ~b
b

� �
, where ~s denotes the scalar part of the

quaternion ~q. Semiglobal stability of the origin v¼ 0 of the error
dynamics of the attitude observer can be established under the fol-
lowing assumption:

ASSUMPTION 1. The acceleration fb and its rate _f
b

are uniformly
bounded, and there exist a constant cobs> 0 such that jjf b

�mbjj2 � cobs for all t� 0.
Initial conditions are restricted to the following sets:
ASSUMPTION 2. q̂e

b 0ð Þ 2 D �eð Þ, where D �eð Þ ¼ f~q j ~s > �eg repre-
sents a set of attitude errors bounded away from 180 deg by a

Fig. 1 Observer block diagram
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margin determined by an arbitrary constant �e 2 0; 1=2ð Þð Þ. More-

over, b̂
b

0ð Þ 2 B ¼ fb 2 R3 j jjbjj2 � Mbg.
LEMMA 2. Assume f̂

e ¼ f e. Then, for each e 2 0; 1=2ð Þð Þ, there
exists a k�P > 0 such that if k1; k2 > k�P, and kI > 0, then

jjv tð Þjj2 � jae�katjjv 0ð Þjj2 (12)

for some ja; ka > 0.
Proof. See Ref. [8]. w

3.2 Translational Motion Observer. We propose the follow-
ing observer:

_̂p
e ¼ v̂e þ

Xm

i¼1

Kpp
i ey;i þ Kpv

i e�;i
� �

(13)

_̂v
e ¼ �2S xe

ie

� �
v̂e þ f̂

e þ ge p̂eð Þ þ
Xm

i¼1

Kvp
i ey;i þ Kvv

i e�;i
� �

(14)

_n ¼ �R q̂e
b

� �
S r̂ð Þf b

IMU þ
Xm

i¼1

Knp
i ey;i þ Knv

i e�;i

� �
(15)

f̂
e ¼ R q̂e

b

� �
f b
IMU þ n (16)

_̂b ¼
Xm

i¼1

Kbp
i ey;i þ Kbv

i e�;i

� �
(17)

where the gain matrices K�i are in general time-varying. While the
structure is similar to Ref. [8], the injection terms are different,
and Ref. [8] does not include estimation of parameters b. A com-
mon feature is that fe is viewed as an unknown input, which is
estimated in Eqs. (15)–(16) to be used in (11). The injection errors
from pseudo-range and range-rate measurements are defined as
ey;i :¼ yi � ŷi and e�;i :¼ �i � �̂ i, with estimated measurements

ŷi ¼ q̂i þ fT
i b̂; �̂ i ¼

p̂e � pe
i

q̂i

� �T

v̂e � ve
i

� �
þ uT

i b̂

where q̂i :¼ jjp̂e � pe
i jj2, and the estimation errors are

~p :¼ pe � p̂e; ~v :¼ ve � v̂e, and ~b :¼ b� b̂. Next, we consider a
linearization of the injection terms.

ASSUMPTION 3. At all time, �q � qi � q > 0.
ASSUMPTION 4. At all time, jjve � ve

i jj2 � �� .
ASSUMPTION 5. The transponder positions pe

i and their velocities
ve

i are known.
LEMMA 3. The injection errors satisfy

ey;i ¼
p̂e � pe

i

q̂i

� �T

~p þ fT
i
~b þ ey;i (18)

e�;i ¼
v̂e � ve

i

q̂i

� �T

~p þ p̂e � pe
i

q̂i

� �T

~v þ uT
i
~b þ e�;i (19)

where

jjey;ijj2 �
1

q
jj~pjj22 (20)

jje�;ijj2 �
1

q
jj~pjj2 � jj~vjj2 þ

3��

2q2
jj~pjj22 (21)

Proof. See Appendix A. w

We define the state of the error dynamics as x :¼ ~p; ~v; ~f ; ~b
� �

,
where ~f :¼ f e � f̂

e
replaces n as a state by combining Eqs. (15)

and (16). Summarized, the equations for the predicted measure-
ment error can now be written in the linearized time-varying form

ey;i ¼ Cy;ixþ ey;i (22)

e�;i ¼ C�;ixþ e�;i (23)

where the 2m rows Cy;i and C�;i of the time-varying matrix C :¼
Cy;1; …; Cy;m; C�;1; …; C�;mð Þ are defined by Cy;i :¼ �d

T

i ; 0; 0; fT
i

� �
and C�;i :¼ �vT

i ;
�d

T

i ; 0; uT
i

� �
. The estimated line-of-sight vectors

are �di :¼ p̂e � pe
i

� �
=q̂i ¼ �pe

i =q̂ i, and the normalized estimated rel-

ative velocity vectors are �vi :¼ v̂e � ve
i

� �
=q̂ i, for i¼ 1, 2,…, m.

We note that

C ¼ GT 0 0 DT
p

BT GT 0 DT
v

 !

where G ¼ �pe
1;…; �pe

m

� �
2 R3�m; B ¼ �ve

1;…; �ve
m

� �
2 R3�m, and

D ¼ Dp;Dvð Þ with Dp ¼ f1;…; fmð Þ and Dv ¼ u1;…;umð Þ.
We note that the time-varying matrix C is known at the current

time and can be used for selection of gains. We also observe that
in typical applications with large distance between the vehicle and
transponders, their relative positions and line-of-sight vectors will
be slowly time-varying, and hence, the measurement matrix C
will be slowly time-varying, since due to Lemma 1, the transients
resulting from initialization of position and velocity are not
expected to be significant. Following similar steps as in Ref. [8],
we arrive at the error dynamics

_x ¼ A� KCð Þxþ q1 t; xð Þ þ q2 t; vð Þ þ q3 t; xð Þ (24)

where

A :¼

0 I3 0 0

0 0 I3 0

0 0 0 0

0 0 0 0

0
BBBB@

1
CCCCA;K :¼

Kpp
1 … Kpp

m Kpv
1 … Kpv

m

Kvp
1 … Kvp

m Kvv
1 … Kvv

m

Knp
1 … Knp

m Knv
1 … Knv

m

Kbp
1 … Kbp

m Kbv
1 … Kbv

m

0
BBBBB@

1
CCCCCA

The perturbation terms are defined as q1 t; xð Þ :¼ 0; q12 t; xð Þ; 0; 0ð Þ
with q12 t; xð Þ ¼ �2S xe

ieð Þx2 þ ge peð Þ � ge pe � x1ð Þð Þ and q2 t;vð Þ :
¼ 0; 0; ~d ; 0
� �

with

~d ¼ I � R ~qð ÞT
� �

R qe
b

� �
S xb

ib

� �
f b þ _f

b
� �

�S xe
ie

� �
I � R ~qð ÞT
� �

R qe
b

� �
f b � R ~qð ÞTR qe

b

� �
S ~bð Þf b

In Ref. [8], it is shown that jjq2 t; vð Þjj2 � c3jjvjj2 for some con-
stant c3 > 0. A fundamental difference compared to Ref. [8] is
that the matrix C is time-varying (rather than constant), and there
is a third perturbation term q3 t; xð Þ :¼ Ke t; xð Þ that results from the
linearization of the injection terms, where e :¼ ey;1; …;ð
ey;m; e�;1; …; e�;mÞ. We note from Lemmas 1 and 3 that e is small
when q is large compared to jj~pjj2; jj~vjj2 and �� . Compared to Ref.
[8] this means that a different strategy for selection of gains is
needed, and one cannot hope for a global stability result. Never-
theless, as in Ref. [8], we want to employ a constant parameter
h � 1 in order to assign a certain time-scale structure to the error
dynamics (24). For this purpose, we introduce the nonsingular
state-transform matrix

Lh :¼ blockdiag I3;
1

h
I3;

1

h2
I3;

1

h3
In

� �
(25)

and the state transform g ¼ Lhx.
LEMMA 4. Let K0 2 R 9þnð Þ�2m be an arbitrary time-varying

gain matrix, and h � 1 be an arbitrary constant. Define
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K :¼ hL�1
h K0Eh (26)

and assume the time-varying Eh 2 R2m�2m satisfies EhC ¼ CLh.
Then, the error dynamics (24) is equivalent to

1

h
_g ¼ A� K0Cð Þgþ 1

h
q1 t; gð Þ þ

1

h3
q2 t; vð Þ

þK0Ehe t;L�1
h g

� �
(27)

Proof. The transformed dynamics are derived by substituting (24)
in _g ¼ Lh _x. It is straightforward to show that the structure of A
leads to LhAx ¼ hAg. Moreover,

LhKCx ¼ hLhL�1
h K0EhCx ¼ hK0CLhx ¼ hK0Cg

The rest of the proof follows by the change of variables according
to g ¼ Lhx. w

The existence of an Eh satisfying EhC ¼ CLh depends on the
null-space of C, as shown next.

ASSUMPTION 6. (i) The number of transponders is

m � 3þ dk=2e, where k ¼ rank DTð Þ. (ii) Three of the estimated
line-of-sight vectors are linearly independent, i.e., rank Gð Þ ¼ 3.
(iii) Three of the estimated normalized relative velocity vectors
are linearly independent, i.e., rank Bð Þ ¼ 3.

LEMMA 5. Eh ¼ CLhCþ satisfies EhC ¼ CLh, where Cþ is the
Moore–Penrose right pseudo-inverse of C.

Proof. See Appendix A. w

The assumption is reasonable and closely related to the assump-
tions underlying Lemma 1, as well as observability that will be
considered shortly. If there are no range-rate measurements, it can
be verified that condition (i) can be replaced by m � 3þ k.

3.3 Stability Analysis. As the first step toward the stability
analysis, we consider the LTV nominal error dynamics

1

h
_g ¼ A� K0Cð Þg (28)

and analyze its stability and robustness before we consider the
effect of the perturbations in Eq. (27).

Let R> 0 be a symmetric matrix that can be interpreted as the
covariance of the pseudo-range and range-rate measurement
noises. The observability Gramian for the system A;R�1=2C

� �
is

W t; tþ sð Þ ¼
ðtþs

t

UT Tð ÞCT Tð ÞR�1C Tð ÞU Tð ÞdT

where the transition matrix is U Tð Þ ¼ eAT , and we recall (from,
e.g., Ref. [25]) that the LTV system is said to be uniformly com-
pletely observable if there exist constants a1; a2; s > 0 such that
for all t� 0 we have a1I � W t; tþ sð Þ � a2I.

ASSUMPTION 7. The LTV system A;R�1=2C
� �

is uniformly com-
pletely observable.

Remark 4. Assumption 7 is related to Assumption 6, as well as the
conditions of Lemma 1. This is further discussed in Appendix B.

There may be many ways to choose a time-varying gain matrix
K0 such that Eq. (28) has desired performance and stability. A
straightforward approach with considerable flexibility for tuning
is to use a Riccati-equation similar to the gain of a Kalman–Bucy
filter for the system (A, C) as described below. In this case, the
close relationship between the complete uniform observability
conditions and the boundedness of the covariance matrix estimate
P is well known, e.g., see Ref. [7], and can be monitored in real-
time without much additional computations.

ASSUMPTION 8. C is uniformly bounded.

Remark 5. It can be observed that the only terms in C that may
not be uniformly bounded are of the form v̂e � ve

i

� �
=q̂ i. Thus,

unbounded C may only occur if ~v goes unbounded. While this can
be dealt with in many ways, a simple approach is resetting of v̂e

based on the velocity computed from raw range and range-rate
measurements (cf. Lemma 1) if v̂e grows out of bounds.

LEMMA 6. Let

K0 :¼ PCTR�1 (29)

where P satisfies the Riccati equation

1

h
_P ¼ APþ PAT � PCTR�1CPþ Q (30)

for some positive definite symmetric matrices Q, R, and P(0).
Then, P is uniformly bounded, and the origin is a globally expo-
nentially stable equilibrium point of the LTV nominal error
dynamics (28) with any constant h � 1.

Proof. The proof follows from Refs. [25] and [26], and we
repeat the main ideas since we need the Lyapunov function later.

Consider a Lyapunov function candidate U g; tð Þ ¼ 1=hð ÞgTP�1g,

which is positive definite and well-defined due to the time-varying
matrix P satisfying Eq. (30) being symmetric, positive definite
with some margin, and bounded. It follows by standard arguments
that along the trajectories of Eqs. (28) and (30) that
_U ¼ �gT P�1QP�1 þ CTR�1C

� �
g, and the result follows by the

positive definiteness of P�1 and Q. w

The structure of the observer is illustrated in the block diagram
in Fig. 1. We notice two feedback loops where one is due to the
use of f̂

e
as a reference vector in the attitude observer, and the

other is caused by linearization of the pseudo-range measurement
equations to get the C-matrix in Eqs. (29) and (30).

Initialization of position and velocity is based on the algebraic
solution, cf. Lemma 1. If the vehicle is not strongly accelerated
during initialization, then also the specific force initialization can
be made accurately with n 0ð Þ ¼ 0 that gives f̂

e
0ð Þ ¼ R q̂e

b 0ð Þ
� �

f b
IMU 0ð Þ. Below, we analyze the conditions for exponential stabil-

ity of the origin of the estimation error dynamics.
ASSUMPTION 9. Initial conditions are in the following sets:

(1) X 	 R9þn is a ball containing the origin.
(2) P 	 R 9þnð Þ� 9þnð Þ is an arbitrary compact set of symmetric

positive definite matrices.
(3) D �eð Þ ¼ f~q j ~s > �eg represents a set of attitude errors

bounded away from 180 deg by a (small) margin deter-
mined by an arbitrary constant �e 2 0; 1=2ð Þð Þ.

(4) B ¼ fb 2 R3 j jjbjj2 � Mbg.
ASSUMPTION 10. Observer gains are chosen according to

(1) k1; k2 > 0 are sufficiently large, cf. [8].
(2) kI > 0 is arbitrary.

Fig. 2 Trajectory of the unmanned aerial vehicle (UAV)
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(3) K is chosen according to Eqs. (26), (29), and (30) tuned by
symmetric P 0ð Þ;Q;R > 0.

PROPOSITION 1. There exists a h� � 1 such that for all h � h�, P
is uniformly bounded, andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jjx tð Þjj22 þ jjv tð Þjj22
q

� je�kt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjx 0ð Þjj22 þ jjv 0ð Þjj22

q
for some j > 0 and k > 0.

Proof. Using U g; tð Þ :¼ 1=hð ÞgTP�1g, we get from the proof of
Lemma 6 that

_U ¼ �gT P�1QP�1 þ CTR�1C
� �

gþ 2

h
gTP�1q1 t; gð Þ

þ 2

h
gTP�1PCTR�1Eheþ

2

h3
gTP�1q2 t; vð Þ

� �c1jjgjj22 þ
2

h
jjgjj2 � jjCTR�1jj �

Xm

i¼1

jjEhjj e2
y;i þ e2

r;i

� �

þ 1

h
c2c4jjgjj22 þ

1

h3
c3c4jjgjj2 � jjvjj2

where c1; c2; c3; c4 > 0 are constants independent of h. Note that a
uniform bound on P�1 that does not depend on h is established in
Lemma 6 in Ref. [17]. Next, using Lemma 3, we have

_U � �c1jjgjj22 þ
1

h
c5 q; ��ð Þjjgjj32

þ 1

h
c2c4jjgjj22 þ

1

h3
c3c4jjgjj2 � jjvjj2

where c5 q; ��ð Þ increases with �� and decreases with q and is inde-

pendent of h.
Similar to Ref. [8], we can show that for any d > 0 and T> 0

there exists a h�1 � 1 such that for h � h�1 there exists an invariant

set X1 	 R9þn such that for jjg 0ð Þjj2 2 X1 we have for all t � T
that jjgjj2 � d. As argued in Ref. [8], this implies j~sj � �e such that
~q never leaves D �eð Þ. Inspired by Grip et al. [8], we now define the
function

W t; ~r ; ~s; ~b
� �

:¼ 1� ~s2ð Þ þ 2‘�s�rR qe
b

� �
~b

b þ ‘

kI

~b
b

� �T
~b

b

where ‘> 0 is a constant [16]. Under the condition j~sj � �e, W is
shown in Ref. [8] to satisfy

_W � �c7jjvjj22 þ c6h
2jjvjj2 � jjgjj2 (31)

for some constants c6; c7 > 0 that are independent of h. Next, we
define the Lyapunov-function candidate V t; g; vð Þ :¼ U t; gð Þ
þ 1=h5
� �

W t; vð Þ. Then

_V � �zTS hð Þzþ
c5 q; ��ð Þ

h
jjgjj32

where we have defined the auxiliary state z :¼ jjgjj2; jjvjj2
� �

2 R2, and the 2� 2-matrix

S hð Þ ¼
c1 �

c2c4

h
� c3c4 þ c6

2h3

� c3c4 þ c6

2h3

c7

h5

0
BBB@

1
CCCA (32)

Considering the first-order and second-order principal minors of
S, we get that S hð Þ > 0 if

h > max
c2c4

c1

;
c2c4c7 þ c3c4 þ c6ð Þ2

c1c7

 !
(33)

Hence, we can choose a h� satisfying (33) such that for all h � h�

there exists an invariant set X2 and a3; a4 > 0, where for all x 2
X2 we have

_V � �a3jjzjj22 � a4jjvjj22 � �2kV

for some k > 0, and the result follows by choosing X as the larg-
est invariant set such that X 	 X1 \ X2, and application of the
comparison lemma [27]. w

Remark 6. The translational motion observer is not a KF since
the state estimate update equation contains certain nonlinear terms
and the auxiliary state n. It has the attractive feature that its error
dynamics are accurately represented by a nominal LTV system
that is used as a basis for selection of the injection gain matrices
using the formulas for the Riccati-equation and gain matrix of the
Kalman–Bucy filter.

Remark 7. In some cases when the parameter vector b influen-
ces all measurements in the same way, the variable b (or at least
some of its elements) can be eliminated from the estimation prob-
lem by forming new measurements that are differences between
original measurements. This is known as time-difference-of-
arrival (TDOA) measurements, e.g., see Ref. [20,23], and can be
employed in order to further reduce the computational complexity
of the estimator since an estimate of b is not needed for most
applications.

Since the LTV system (27) is slowly time-varying, we can reap
the benefits of solving the Riccati equation on a slower time-scale
than the estimator updates, roughly speaking only when there is a
significant change in the transponders’ LOS vectors due to the rel-
ative motion of the vehicle and the transponders, or enabling or
disabling some range measurements. In many practical applica-
tions, this can be implemented by solving the algebraic Riccati-
equation periodically at low rate. In the context of terrestrial
GNSS, this relates to the dynamics of the satellites relative to the
earth, and in the context of a surface ship on dynamic positioning
using hydro-acoustic positioning this relates to the motion of the
ship relative to the transponders at the seabed. Hence, the pro-
posed solution will in many typical applications not incur much
more computations than a fixed-gain strategy and typically less
than both a direct and indirect extended KF approach that would
require updating of the covariance matrix at a higher update
frequency.

The rate of convergence of the estimation error depends on the
tuning of the parameters, as well as the quality of the sensors.
Bounds on the convergence rate and magnitude of the estimation
error depends on the bounds stated in the assumptions mentioned.

4 Experimental Results

The experimental data are acquired using a Penguin B fixed-
wing UAV equipped with a tactical grade IMU and GNSS
receivers. The inertial and magnetometer measurements are avail-
able from an ADIS 16488 IMU at 410 Hz, whereas pseudo-range
and carrier-phase measurements are supplied by a u-Blox LEA-6T
receiver at 5 Hz. The pseudo-range measurements are corrected
for time of transmission between the satellite and receiver, as well
as the tropospheric delay.

Additionally, a similar GNSS-receiver at a known and close
location serves as a base station for a real-time-kinematic (RTK)
solution for the UAV position. The RTK position is determined
using the open source program RTKLIB, and will be used as refer-
ence since the RTK position is known to have decimeter-level
accuracy [3], since a fix or float solution is achieved at every time
during the experiments. The flight trajectory is illustrated in Fig. 2.
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The nonlinear observer parameters are chosen as: k1 ¼ 0:25; k
2 ¼ 0:75; kI ¼ 0:004; R ¼ 0:12Im; Q ¼ blockdiag 0I3; 10�10I3;

�
2:5 � 10�4I3; 1Þ.

A multiplicative-extended-Kalman-filter (MEKF) is imple-
mented for comparison. The MEKF integrates acceleration and
angular velocity measured by the IMU with global ranges, see
Refs. [5] and [6]. The attitude is represented as a unit quaternion,
where the attitude increment ~u is included in the state vector

resulting in 16 states, i.e., xMEKF ¼ p̂e; v̂e; f̂
e
; ~u; b̂

b
; b̂

h i
. We note

that the MEKF estimates f̂
e

to be used as an ECEF reference vec-
tor for the acceleration measurement in the attitude measurement
model. The parameters for the MEKF are: RMEKF

¼ blockdiag 0:12Im; 0:001I3; 0:01I3

� �
, where the six last elements

correspond to the use of the magnetometer and accelerometer as
aiding sensors for attitude, QMEKF ¼ blockdiag 0I3;ð
10�10I3; 2:5� 10�4I3; 1; 10�5I3; 10�9I3Þ.

It is interesting to note that the tuning of the translation motion
observer (TMO) of the nonlinear observers and the MEKF are
compatible. The diagonal elements of the covariance matrices Q
and R can be chosen based on the variances of the various meas-
urements, and the same values can be used in the nonlinear
observer (NLO) and MEKF. This means that the nonlinear
observer approach can take advantage of the extensive experien-
ces with Kalman-filtering.

4.1 Estimation Accuracy. In the experimental results, the
position estimation errors are shown for a part of the flight in Fig.
3. The position estimation performance of the proposed nonlinear
observer is seen to be comparable to the MEKF, as shown in
Table 1. Two versions of the nonlinear observer are compared,
where the difference is related to the computation of the time-
varying gain of the TMO: A discrete-time version where the
TMO’s Riccati-equation is updated at the 5 Hz GNSS frequency
(denoted NLO), and a version where instead the algebraic Riccati-
equation (ARE) is solved periodically at 0.003 Hz (denoted NLO-

ARE). It is easily seen that their estimates are very similar since
the red and black curves are almost indistinguishable in Fig. 3.
Attitude estimates are shown in Fig. 4.

We remark that the improved estimates could possibly have
been achieved by all the methods by more realistic modeling of
GNSS pseudo-range measurement errors using the Markov-
models, see Ref. [18].

4.2 Computational Load. The computational complexity of
the proposed nonlinear observer is compared to the MEKF by
counting the average number of arithmetic operations (additions
and multiplications) per second in Table 2. These results show
that the NLO and NLO-ARE computational loads are in average
23.6% and 21.6% of the MEKF, respectively.

The main difference in computational complexity is obviously
related to the use of fixed gains in the nonlinear attitude observer.
In addition, the TMO’s multirate implementation of the gain com-
putations and Riccati-equation solutions allow some computations
to be saved. The MEKF implementation runs at GNSS frequency,
i.e., 5 Hz. On the other hand, the two versions of the nonlinear
observer update the gains either by solving the Riccati equation at
5 Hz (NLO) or an algebraic Riccati equation at 0.003 Hz (NLO-
ARE). The differences in estimation accuracy documented in Sec.
4.1 strongly indicate that no significant loss of estimation accu-
racy results from updating the Riccati equation at 0.003 Hz versus
5 Hz.

Fig. 3 Position estimation errors of nonlinear observer (red), nonlinear observer with ARE
(black), and MEKF (blue). The RTK solution is used as reference.

Table 1 Comparison of estimation accuracy, averaged over
whole flight trajectory

RMSE (x, y, z) STD (x, y, z)

NLO 3.379 3.685 3.001 2.415 0.944 2.811
NLO-ARE 3.046 3.737 3.053 2.256 0.971 2.727
MEKF 3.475 3.715 2.983 2.461 0.959 2.858

RMSE: root-mean-square error and STD: standard deviation.
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5 Conclusions

Position estimation based on pseudo-range and range-rate
measurements is an inherently nonlinear problem. In order to
design an estimator for fusing the pseudo-range and range-rate
measurements with inertial and compass measurements, we have
designed a nonlinear observer where the only linearization is
made with respect to the pseudo-range and range-rate measure-
ment equations. The resulting observer is semiglobally exponen-
tially stable with respect to attitude and gyro bias initialization
errors, and locally exponentially stable with respect to position,
velocity, and acceleration initialization errors. The practical valid-
ity of the linearization is strongly motivated by the fact that a
computationally simple analytic formula can be used to explicitly
solve the pseudo-range equations in order to accurately initialize
(or reset, if necessary) the nonlinear observer position and veloc-
ity estimates. The experimental results show that the accuracy can
be comparable to an MEKF.

A key feature of the method is a time-scale separation that
allows different observer blocks to be updated at different rates:

(1) Instantaneous resetting of position and velocity estimates
using an algebraic solution to the pseudo-range equations

during initialization or change of transponder configuration.
This approach justifies that only a local region of attraction
may be required for the position and velocity estimates due
to the good initialization accuracy.

(2) Attitude estimation using a Riccati-free fixed-gain nonlin-
ear observer, including gyro bias, on a fast time-scale
driven by the sampling rate of the IMU and magnetometer.

(3) Estimation of position, velocity, acceleration, and error
parameters for the pseudo-range measurement system,
using a nonlinear translational model observer with time-
varying gains operating on a slower time-scale driven by
the sampling rate of the range and range-rate sensors.

(4) Computation of the slowly time-varying gain matrices for
the translational motion observer using a Riccati equation.
These computations are made on the slowest time-scale
driven by the change in relative position between the vehi-
cle and the transponders, and for many applications it may
be implemented by solving an algebraic Riccati equation
periodically at low rate.

The time-scale separation can be directly exploited for compu-
tational efficiency in a multirate discrete-time implementation.

Fig. 4 Estimated attitude of nonlinear observer (red), nonlinear observer with ARE (black),
and MEKF (blue)

Table 2 Numerical comparison of computational complexity

MEKF NLO NLO-ARE

Mult. Add. Mult. Add. Mult. Add.

Attitude observer prediction (410 Hz) 82,000 102,500 8200 4920 8200 4920
Attitude observer correction (410 Hz) 81180 77,080 54,940 41,000 54,940 41,000
Attitude observer gain computation (410 Hz) 147,600 137,760 — — — —
TMO prediction (5 Hz) 10,845 10,280 10,845 10,280 10,845 10,280
TMO correction (5 Hz) 7750 7275 7750 7275 7750 7275
TMO gain computation (5 Hz) 4250 4875 4250 4875 — —
TMO gain computation (0.003 Hz) — — — — 3 3
Total 333,625 339,770 85,985 73,270 81,738 63,478

The values are average number of arithmetic operations per second.
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Appendix A: Proofs

Proof of Lemma 3. It follows by Taylor’s theorem that

ey;i ¼
p̂e � pe

i

q̂ i

� �T

~p þ fT
i
~b þ 1

2
~pT �Hi ~p (A1)

where

�Hi ¼
1

�q i

I3 �
�pe � pe

ið Þ �pe � pe
ið ÞT

�q3
i

(A2)

where �pe is on the line between p̂e and pe, �qi :¼ jj�pe � pe
i jj2. The

bound on ey;i follows using the triangle and Cauchy–Schwarz
inequalities.

Applying Taylor’s theorem also gives

e�;i ¼
p̂e � pe

i

� �T

q̂ i

~v þ
v̂e � ve

i

� �T

q̂ i

~p þ uT
i
~b

þ 1

2
~p; ~vð ÞT

�Ji
�Hi

�Hi 0

� �
~p; ~vð Þ

(A3)

where �Hi is defined similar to Eq. (A1), and it is straightforward
to show that

�J i ¼
1

�q3
i

�pe � pe
i

� �
�ve � ve

i

� �T þ �pe � pe
i Þ

T �ve � ve
i

� �
I3

� �
� 3

�q5
i

�pe � pe
i

� �
�pe � pe

i

� �
T �pe � pe

i

� �
�ve � ve

i

� �
T

were �qi ¼ jj�pe � pe
i jj2 for some �pe on the line between pe and p̂e,

and �ve is on the line between ve and v̂e. The bound on e�;i follows
using the triangle and Cauchy–Schwarz inequalities. w

Proof of Lemma 5. In order to characterize the null-space of C,

let Z 2 Rn� n�kð Þ
have n–k columns that forms an orthonormal

basis for the null-space of DT and Y 2 Rn�k have k ¼ rank DTð Þ
columns that forms an orthonormal basis for the range-space of

DT. It follows that DTZ ¼ 0 and rank DTYð Þ ¼ k. Consider a vec-

tor x ¼ x1; x2; x3; x4ð Þ, where x1; x2; x3 2 R3 and x4 2 Rn. Let

x4 ¼ Zx4Z þ Yx4Y , where x4Z 2 Rn�k and x4Y 2 Rk. The vector x
belongs to the null-space of C if Cx¼ 0, which is equivalent to
M � x1; x2; x4Yð Þ ¼ 0 where

M ¼ GT 0 DT
p Y

BT GT DT
v Y

 !

From Assumption 6 it follows immediately that M 2 R2m� 6þkð Þ

has rank 6þ k and 2m � 6þ k. From M � x1; x2; x4Yð Þ ¼ 0, it fol-
lows that the null-space of C is characterized by
x1 ¼ 0; x2 ¼ 0; x4Y ¼ 0, while x3 and x4Z can be arbitrary.

Now, consider a singular value decomposition C ¼ USVT ,
where the Moore–Penrose pseudo-inverse is given by
Cþ ¼ VSþUT , cf. [28]. From the characterization of the null-
space of C, we have

CþC ¼ VSþSVT ¼ blockdiag I3; I3; 03; Jð Þ

for some matrix J 2 Rn�n, and we get LhCþC ¼ CþCLh due to
both CþC and Lh sharing the same block diagonal structure. The
result follows from EhC ¼ CLhCþC ¼ CCþCLh ¼ CLh since the
Moore–Penrose pseudo-inverse satisfies CCþC ¼ C, [28]. w

Appendix B: Observability Analysis

In this Appendix, we study the observability Gramian
W t; tþ sð Þ, where we have assumed without loss of generality
that R¼ I. The state transition matrix U Tð Þ ¼ eAT is straightfor-
ward to compute

U Tð Þ ¼
I3 TI3 T2=2

� �
I3 0

0 I3 TI3 0

0 0 I3 0

0 0 0 In

0
BBB@

1
CCCA

We get the following expression

C Tð ÞU Tð Þ ¼
GT TGT T

2
GT DT

p

BT TBT þ GT T2

2
BT þ TGT DT

v

0
BB@

1
CCA

Let N Tð Þ :¼ U Tð ÞTCT Tð ÞC Tð ÞU Tð Þ 2 R 9þnð Þ� 9þnð Þ
be the inte-

grand of the observability Gramian. It is instructive to consider
some special cases.

Special Case: Only Range Measurements, No Pseudo-
Range Error Parameters b. Consider the case when n¼ 0 and
there are only range measurements (i.e., no range-rate measure-
ments). Then

C Tð ÞU Tð Þ ¼ GT
I3 TI3

T2

2
I3

� �

We get N Tð Þ ¼ N Tð Þ � GGT , and

N Tð Þ ¼

1 T
T2

2

T T2 T3

2
T2

2

T3

2

T4

4

0
BBBBBB@

1
CCCCCCA

We have W tþ s; tð Þ ¼
Ð tþs

t N Tð ÞdT � GGT . We observe that

while N Tð Þ 2 R3�3 has rank one, it is straightforward to prove

that rank
Ð tþs

t N Tð ÞdT
� �

¼ 3 for all s > 0. Consequently, with

three linearly independent transponder positions forming G, we

have that rank GGTð Þ ¼ 3 and rank W tþ s; tð Þð Þ ¼ 9 since

rank A� Bð Þ ¼ rank Að Þ � rank Bð Þ.

Special Case: Only Range Measurements, With Receiver
Clock Bias. In this case n¼ 1, and Dp¼ (1, 1, 1, 1) since the
receiver clock bias is the same for all the measurements made by
the single receiver. In this case, W tþ s; tð Þ 2 R10�10. Compared
to the previous case, it is straightforward to see that a fourth trans-
ponder is needed such that GGT 2 R4�4 has full rank in this case.

References
[1] Farrell, J. A., 2008, Aided Navigation: GPS With High Rate Sensors, McGraw-

Hill, New York.
[2] Grewal, M., Weill, L. R., and Andrews, A. P., 2007, Global Positioning Sys-

tems, Inertial Navigation and Integration, Wiley, New York.
[3] Groves, P. D., 2013, Principles of GNSS, Inertial, and Multisensor Integrated

Navigation Systems, 2nd ed., Artech House Remote Sensing Library, London.

Journal of Dynamic Systems, Measurement, and Control JANUARY 2017, Vol. 139 / 011007-9

Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1002/0470099720
http://dx.doi.org/10.1002/0470099720


[4] Gustafsson, F., 2012, Statistical Sensor Fusion, Studentliteratur, Link€opings
University, Link€oping, Sweden.

[5] Markley, F., 2003, “Attitude Error Representation for Kalman Filtering,” J.
Guid., Control Dyn., 26(2), pp. 311–317.

[6] Crassidis, J. L., Markley, F. L., and Cheng, Y., 2007, “Survey of Nonlinear
Attitude Estimation Methods,” J. Guid., Control Dyn., 30(1), pp. 12–28.

[7] Reif, K., Sonnemann, F., and Unbehauen, R., 1998, “An EKF-Based Nonlinear
Observer With a Prescribed Degree of Stability,” Automatica, 34(9), pp. 1119–1123.

[8] Grip, H. F., Fossen, T. I., Johansen, T. A., and Saberi, A., 2013, “Nonlinear
Observer for GNSS-Aided Inertial Navigation With Quaternion-Based Attitude
Estimation,” American Control Conference, Washington, DC, June 17–19, pp.
272–279.

[9] Morgado, M., Batista, P., Oliveira, P., and Silvestre, C., 2011, “Position and
Velocity USBL/IMU Sensor-Based Navigation Filter,” IFAC World Congress,
Milan, Italy, Aug. 28–Sept. 3, pp. 13642–13647.

[10] Batista, P., Silvestre, C., and Oliveira, P., 2013, “GAS Tightly Coupled LBL/
USBL Position and Velocity Filter for Underwater Vehicles,” European Control
Conference, Zurich, Switzerland, July 17–19, pp. 2982–2987.

[11] Batista, P., 2015, “GES Long Baseline Navigation With Unknown Sound
Velocity and Discrete-Time Range Measurements,” IEEE Trans. Control Syst.
Technol., 23(1), pp. 219–230.

[12] Batista, P., Silvestre, C., and Oliveira, P., 2014, “Sensor-Based Long Baseline
Navigation: Observability Analysis and Filter Design,” Asian J. Control, 16(4),
pp. 974–994.

[13] Batista, P., Silvestre, C., and Oliveira, P., 2015, “Tightly Coupled Long Base-
line/Ultra-Short Baseline Integrated Navigation Systems,” Int. J. Syst. Sci.,
47(8), pp. 1837–1855.

[14] Batista, P., 2014, “GES Long Baseline Navigation With Clock Offset Estimation,”
European Control Conference, Strasbourg, France, June 24–27, pp. 3011–3016.

[15] Mahoney, R., Hamel, T., and Pfimlin, J.-M., 2008, “Nonlinear Complementary
Filters on the Special Orthogonal Group,” IEEE Trans. Autom. Control, 53(5),
pp. 1203–1218.

[16] Grip, H. F., Fossen, T. I., Johansen, T. A., and Saberi, A., 2012, “Attitude
Estimation Using Biased Gyro and Vector Measurements With Time-
Varying Reference Vectors,” IEEE Trans. Autom. Control, 57(5), pp.
1332–1338.

[17] Johansen, T. A., and Fossen, T. I., 2015, “Nonlinear Observer for Inertial Navi-
gation Aided by Pseudo-Range and Range-Rate Measurements,” European
Control Conference, Linz, Austria, July 15–17, pp. 1673–1680.

[18] Bryne, T. H., Hansen, J. M., Rogne, R. H., Sokolova, N., Fossen, T. I.,
and Johansen, T. A., 2016, “Nonlinear Observers for Integrated INS/GNSS
Navigation—Implementation Aspects,” IEEE Control Systems Magazine (in
press).

[19] Hansen, J. M., Johansen, T. A., and Fossen, T. I., 2016, “Tightly Coupled Inte-
grated Inertial and Real-Time-Kinematic Positioning Approach Using Nonlin-
ear Observer,” American Control Conference, Boston, MA, pp. 5511–5518.

[20] Dardari, D., Falletti, E., and Luise, M., 2012, Satellite and Terrestrial Radio
Positioning Techniques, Academic Press, Cambridge, MA.

[21] Bancroft, S., 1985, “An Algebraic Solution to the GPS Equations,” IEEE Trans.
Aerosp. Electron. Syst., 21(1), pp. 56–59.

[22] Chaffee, J., and Abel, J., 1994, “On the Exact Solutions of Pseudorange Equa-
tions,” IEEE Trans. Aerosp. Electron. Syst., 30(4), pp. 1021–1030.

[23] Yan, J., Tiberus, C. C. J. M., Janssen, G. J. M., Tennissen, P. J. G., and Bellusci,
G., 2013, “Review of Range-Based Positioning Algorithms,” IEEE Aerosp.
Electron. Syst. Mag., Part II, 28(8), pp. 2–27.

[24] Shuster, M., and Oh, S., 1981, “Three-Axis Attitude Determination for Vector
Observations,” J. Guid., Control Dyn., 4(1), pp. 70–77.

[25] Anderson, B. D. O., 1971, “Stability Properties of Kalman–Bucy Filters,” J.
Franklin Inst., 291(2), pp. 137–144.

[26] Kalman, R. E., and Bucy, R. S., 1961, “New Results in Linear Filtering and Pre-
diction Theory,” ASME J. Basic Eng., 83(1), pp. 95–109.

[27] Khalil, H. K., 2002, Nonlinear Systems, Prentice-Hall, Upper Saddle River, NJ.
[28] Horn, R. A., and Johnson, C. R., 2013, Matrix Analysis, 2 ed., Cambridge Uni-

versity Press, New York.

011007-10 / Vol. 139, JANUARY 2017 Transactions of the ASME

Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://swepub.kb.se/bib/swepub:oai:DiVA.org:liu-74627?tab2=abs&language=en
http://dx.doi.org/10.2514/2.5048
http://dx.doi.org/10.2514/2.5048
http://dx.doi.org/10.2514/1.22452
http://dx.doi.org/10.1016/S0005-1098(98)00053-3
http://dx.doi.org/10.1109/ACC.2013.6579849
http://dx.doi.org/10.3182/20110828-6-IT-1002.01127
http://www.nt.ntnu.no/users/skoge/prost/proceedings/ecc-2013/data/papers/0605.pdf
http://www.nt.ntnu.no/users/skoge/prost/proceedings/ecc-2013/data/papers/0605.pdf
http://dx.doi.org/10.1109/TCST.2014.2321973
http://dx.doi.org/10.1109/TCST.2014.2321973
http://dx.doi.org/10.1002/asjc.778
http://dx.doi.org/10.1080/00207721.2014.955070
http://dx.doi.org/10.1109/ECC.2014.6862180
http://dx.doi.org/10.1109/TAC.2008.923738
http://dx.doi.org/10.1109/TAC.2011.2173415
http://dx.doi.org/10.1109/ECC.2015.7330778
http://dx.doi.org/10.1109/ECC.2015.7330778
http://dx.doi.org/10.1109/TAES.1985.310538
http://dx.doi.org/10.1109/TAES.1985.310538
http://dx.doi.org/10.1109/7.328767
http://dx.doi.org/10.1109/MAES.2013.6575420
http://dx.doi.org/10.1109/MAES.2013.6575420
http://dx.doi.org/10.2514/3.19717
http://dx.doi.org/10.1016/0016-0032(71)90016-0
http://dx.doi.org/10.1016/0016-0032(71)90016-0
http://dx.doi.org/10.1115/1.3658902

	s1
	l
	s1A
	s1B
	s2
	s2A
	FD1
	FD2
	FD3
	s2B
	FD4
	FD5
	FD6
	FD7
	FN1
	FD8
	s2C
	s3
	s3A
	FD9
	FD10
	FD11
	1
	FD12
	FD13
	FD14
	FD15
	FD16
	FD17
	FD18
	FD19
	FD20
	FD21
	FD22
	FD23
	FD24
	s3B
	FD25
	FD26
	FD27
	s3B
	FD28
	s3C
	FD29
	FD30
	2
	FD31
	FD32
	FD33
	s3C
	s4
	s4A
	s4B
	3
	1
	T1n1
	s5
	4
	2
	T2n1
	FDA1
	FDA2
	FDA3
	APP1
	APP2
	s6
	s6A
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28

