16 research outputs found

    How Fraudster Detection Contributes to Robust Recommendation

    Full text link
    The adversarial robustness of recommendation systems under node injection attacks has received considerable research attention. Recently, a robust recommendation system GraphRfi was proposed, and it was shown that GraphRfi could successfully mitigate the effects of injected fake users in the system. Unfortunately, we demonstrate that GraphRfi is still vulnerable to attacks due to the supervised nature of its fraudster detection component. Specifically, we propose a new attack metaC against GraphRfi, and further analyze why GraphRfi fails under such an attack. Based on the insights we obtained from the vulnerability analysis, we build a new robust recommendation system PDR by re-designing the fraudster detection component. Comprehensive experiments show that our defense approach outperforms other benchmark methods under attacks. Overall, our research demonstrates an effective framework of integrating fraudster detection into recommendation to achieve adversarial robustness

    Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged Fraudsters

    Full text link
    Graph Neural Networks (GNNs) have been widely applied to fraud detection problems in recent years, revealing the suspiciousness of nodes by aggregating their neighborhood information via different relations. However, few prior works have noticed the camouflage behavior of fraudsters, which could hamper the performance of GNN-based fraud detectors during the aggregation process. In this paper, we introduce two types of camouflages based on recent empirical studies, i.e., the feature camouflage and the relation camouflage. Existing GNNs have not addressed these two camouflages, which results in their poor performance in fraud detection problems. Alternatively, we propose a new model named CAmouflage-REsistant GNN (CARE-GNN), to enhance the GNN aggregation process with three unique modules against camouflages. Concretely, we first devise a label-aware similarity measure to find informative neighboring nodes. Then, we leverage reinforcement learning (RL) to find the optimal amounts of neighbors to be selected. Finally, the selected neighbors across different relations are aggregated together. Comprehensive experiments on two real-world fraud datasets demonstrate the effectiveness of the RL algorithm. The proposed CARE-GNN also outperforms state-of-the-art GNNs and GNN-based fraud detectors. We integrate all GNN-based fraud detectors as an opensource toolbox: https://github.com/safe-graph/DGFraud. The CARE-GNN code and datasets are available at https://github.com/YingtongDou/CARE-GNN.Comment: Accepted by CIKM 202

    Robust Recommender System: A Survey and Future Directions

    Full text link
    With the rapid growth of information, recommender systems have become integral for providing personalized suggestions and overcoming information overload. However, their practical deployment often encounters "dirty" data, where noise or malicious information can lead to abnormal recommendations. Research on improving recommender systems' robustness against such dirty data has thus gained significant attention. This survey provides a comprehensive review of recent work on recommender systems' robustness. We first present a taxonomy to organize current techniques for withstanding malicious attacks and natural noise. We then explore state-of-the-art methods in each category, including fraudster detection, adversarial training, certifiable robust training against malicious attacks, and regularization, purification, self-supervised learning against natural noise. Additionally, we summarize evaluation metrics and common datasets used to assess robustness. We discuss robustness across varying recommendation scenarios and its interplay with other properties like accuracy, interpretability, privacy, and fairness. Finally, we delve into open issues and future research directions in this emerging field. Our goal is to equip readers with a holistic understanding of robust recommender systems and spotlight pathways for future research and development

    Graph Learning for Anomaly Analytics: Algorithms, Applications, and Challenges

    Full text link
    Anomaly analytics is a popular and vital task in various research contexts, which has been studied for several decades. At the same time, deep learning has shown its capacity in solving many graph-based tasks like, node classification, link prediction, and graph classification. Recently, many studies are extending graph learning models for solving anomaly analytics problems, resulting in beneficial advances in graph-based anomaly analytics techniques. In this survey, we provide a comprehensive overview of graph learning methods for anomaly analytics tasks. We classify them into four categories based on their model architectures, namely graph convolutional network (GCN), graph attention network (GAT), graph autoencoder (GAE), and other graph learning models. The differences between these methods are also compared in a systematic manner. Furthermore, we outline several graph-based anomaly analytics applications across various domains in the real world. Finally, we discuss five potential future research directions in this rapidly growing field

    Heterogeneous Graph Neural Networks for Fraud Detection and Explanation in Supply Chain Finance

    Get PDF
    It is a critical mission for financial service providers to discover fraudulent borrowers in a supply chain. The borrowers’ transactions in anongoing business are inspected to support the providers’ decision on whether to lend the money. Considering multiple participants in a supply chain business, the borrowers may use sophisticated tricks to cheat, making fraud detection challenging. In this work, we propose a multitask learning framework, MultiFraud, for complex fraud detection with reasonable explanation. The heterogeneous information from multi-view around the entities is leveraged in the detection framework based on heterogeneous graph neural networks. MultiFraud enables multiple domains to share embeddings and enhance modeling capabilities for fraud detection. The developed explainer provides comprehensive explanations across multiple graphs. Experimental results on five datasets demonstrate the framework’s effectiveness in fraud detection and explanation across domains

    Graph learning for anomaly analytics : algorithms, applications, and challenges

    Get PDF
    Anomaly analytics is a popular and vital task in various research contexts that has been studied for several decades. At the same time, deep learning has shown its capacity in solving many graph-based tasks, like node classification, link prediction, and graph classification. Recently, many studies are extending graph learning models for solving anomaly analytics problems, resulting in beneficial advances in graph-based anomaly analytics techniques. In this survey, we provide a comprehensive overview of graph learning methods for anomaly analytics tasks. We classify them into four categories based on their model architectures, namely graph convolutional network, graph attention network, graph autoencoder, and other graph learning models. The differences between these methods are also compared in a systematic manner. Furthermore, we outline several graph-based anomaly analytics applications across various domains in the real world. Finally, we discuss five potential future research directions in this rapidly growing field. © 2023 Association for Computing Machinery

    Out of the Box Thinking: Improving Customer Lifetime Value Modelling via Expert Routing and Game Whale Detection

    Full text link
    Customer lifetime value (LTV) prediction is essential for mobile game publishers trying to optimize the advertising investment for each user acquisition based on the estimated worth. In mobile games, deploying microtransactions is a simple yet effective monetization strategy, which attracts a tiny group of game whales who splurge on in-game purchases. The presence of such game whales may impede the practicality of existing LTV prediction models, since game whales' purchase behaviours always exhibit varied distribution from general users. Consequently, identifying game whales can open up new opportunities to improve the accuracy of LTV prediction models. However, little attention has been paid to applying game whale detection in LTV prediction, and existing works are mainly specialized for the long-term LTV prediction with the assumption that the high-quality user features are available, which is not applicable in the UA stage. In this paper, we propose ExpLTV, a novel multi-task framework to perform LTV prediction and game whale detection in a unified way. In ExpLTV, we first innovatively design a deep neural network-based game whale detector that can not only infer the intrinsic order in accordance with monetary value, but also precisely identify high spenders (i.e., game whales) and low spenders. Then, by treating the game whale detector as a gating network to decide the different mixture patterns of LTV experts assembling, we can thoroughly leverage the shared information and scenario-specific information (i.e., game whales modelling and low spenders modelling). Finally, instead of separately designing a purchase rate estimator for two tasks, we design a shared estimator that can preserve the inner task relationships. The superiority of ExpLTV is further validated via extensive experiments on three industrial datasets
    corecore