319 research outputs found

    The γγ→A0A0\gamma \gamma \to A^0 A^0 process at a γγ\gamma \gamma Collider

    Full text link
    The helicity amplitudes for the process γγ→A0A0\gamma \gamma \to A^0 A^0 are studied to 1-loop order in the minimal SUSY (MSSM) model, where A0A^0 is the CP-odd Higgs particle. Simple exact analytic formulae are obtained, in terms of the C0C_0 and D0D_0 Passarino-Veltman functions; in spite of the fact that the loop-diagrams often involve different particles running along their sides. For a usual mSUGRA set of parameters, σ(γγ→A0A0)∼(0.1−0.2)fb\sigma (\gamma \gamma \to A^0 A^0) \sim (0.1-0.2)\rm fb is expected. If SUSY is realized in Nature, these expressions should be useful for understanding the Higgs sector.Comment: Misprints in typos corrected, 1 reference added e-mail: [email protected]

    Far-field approximation for hydrodynamic interactions in parallel-wall geometry

    Full text link
    A complete analysis is presented for the far-field creeping flow produced by a multipolar force distribution in a fluid confined between two parallel planar walls. We show that at distances larger than several wall separations the flow field assumes the Hele-Shaw form, i.e., it is parallel to the walls and varies quadratically in the transverse direction. The associated pressure field is a two-dimensional harmonic function that is characterized by the same multipolar number m as the original force multipole. Using these results we derive asymptotic expressions for the Green's matrix that represents Stokes flow in the wall-bounded fluid in terms of a multipolar spherical basis. This Green's matrix plays a central role in our recently proposed algorithm [Physica A xx, {\bf xxx} (2005)] for evaluating many-body hydrodynamic interactions in a suspension of spherical particles in the parallel-wall geometry. Implementation of our asymptotic expressions in this algorithm increases its efficiency substantially because the numerically expensive evaluation of the exact matrix elements is needed only for the neighboring particles. Our asymptotic analysis will also be useful in developing hydrodynamic algorithms for wall-bounded periodic systems and implementing acceleration methods by using corresponding results for the two-dimensional scalar potential.Comment: 28 pages 5 figure

    Adsorption of Self-Assembled Rigid Rods on Two-Dimensional Lattices

    Get PDF
    Monte Carlo (MC) simulations have been carried out to study the adsorption on square and triangular lattices of particles with two bonding sites that, by decreasing temperature or increasing density, polymerize reversibly into chains with a discrete number of allowed directions and, at the same time, undergo a continuous isotropic-nematic (IN) transition. The process has been monitored by following the behavior of the adsorption isotherms for different values of lateral interaction energy/temperature. The numerical data were compared with mean-field analytical predictions and exact functions for noninteracting and 1D systems. The obtained results revealed the existence of three adsorption regimes in temperature. (1) At high temperatures, above the critical one characterizing the IN transition at full coverage Tc(\theta=1), the particles are distributed at random on the surface and the adlayer behaves as a noninteracting 2D system. (2) At very low temperatures, the asymmetric monomers adsorb forming chains over almost the entire range of coverage, and the adsorption process behaves as a 1D problem. (3) In the intermediate regime, the system exhibits a mixed regime and the filling of the lattice proceeds according to two different processes. In the first stage, the monomers adsorb isotropically on the lattice until the IN transition occurs in the system and, from this point, particles adsorb forming chains so that the adlayer behaves as a 1D fluid. The two adsorption processes are present in the adsorption isotherms, and a marked singularity can be observed that separates both regimes. Thus, the adsorption isotherms appear as sensitive quantities with respect to the IN phase transition, allowing us (i) to reproduce the phase diagram of the system for square lattices and (ii) to obtain an accurate determination of the phase diagram for triangular lattices.Comment: Langmuir, 201

    Credimus

    Full text link
    We believe that economic design and computational complexity---while already important to each other---should become even more important to each other with each passing year. But for that to happen, experts in on the one hand such areas as social choice, economics, and political science and on the other hand computational complexity will have to better understand each other's worldviews. This article, written by two complexity theorists who also work in computational social choice theory, focuses on one direction of that process by presenting a brief overview of how most computational complexity theorists view the world. Although our immediate motivation is to make the lens through which complexity theorists see the world be better understood by those in the social sciences, we also feel that even within computer science it is very important for nontheoreticians to understand how theoreticians think, just as it is equally important within computer science for theoreticians to understand how nontheoreticians think

    Existence versus Exploitation: The Opacity of Backbones and Backdoors Under a Weak Assumption

    Full text link
    Backdoors and backbones of Boolean formulas are hidden structural properties. A natural goal, already in part realized, is that solver algorithms seek to obtain substantially better performance by exploiting these structures. However, the present paper is not intended to improve the performance of SAT solvers, but rather is a cautionary paper. In particular, the theme of this paper is that there is a potential chasm between the existence of such structures in the Boolean formula and being able to effectively exploit them. This does not mean that these structures are not useful to solvers. It does mean that one must be very careful not to assume that it is computationally easy to go from the existence of a structure to being able to get one's hands on it and/or being able to exploit the structure. For example, in this paper we show that, under the assumption that P ≠\neq NP, there are easily recognizable families of Boolean formulas with strong backdoors that are easy to find, yet for which it is hard (in fact, NP-complete) to determine whether the formulas are satisfiable. We also show that, also under the assumption P ≠\neq NP, there are easily recognizable sets of Boolean formulas for which it is hard (in fact, NP-complete) to determine whether they have a large backbone

    Semi-automatic Proofs about Object Graphs in Separation Logic

    Get PDF
    Published correctness proofs of garbage collectors in separationlogic to date depend on extensive manual, interactive formulamanipulations. This paper shows that the approach of symbolicexecution in separation logic, as first developed by Smallfoot,also encompasses reasoning about object graphs given by the reachabilityof objects. This approach yields semi-automatic proofs oftwo central garbage collection algorithms: Schorr-Waite graph marking and Cheney's collector. Our framework is developed as a conservativeextension of Isabelle/HOL. Our verification environment re-uses theSimpl framework for classical Hoare logic

    Dielectric function and plasmons in graphene

    Full text link
    The electromagnetic response of graphene, expressed by the dielectric function, and the spectrum of collective excitations are studied as a function of wave vector and frequency. Our calculation is based on the full band structure, calculated within the tight-binding approximation. As a result, we find plasmons whose dispersion is similar to that obtained in the single-valley approximation by Dirac fermions. In contrast to the latter, however, we find a stronger damping of the plasmon modes due to inter-band absorption. Our calculation also reveals effects due to deviations from the linear Dirac spectrum as we increase the Fermi energy, indicating an anisotropic behavior with respect to the wave vector of the external electromagnetic field

    On the ground state energy scaling in quasi-rung-dimerized spin ladders

    Full text link
    On the basis of periodic boundary conditions we study perturbatively a large N asymptotics (N is the number of rungs) for the ground state energy density and gas parameter of a spin ladder with slightly destroyed rung-dimerization. Exactly rung-dimerized spin ladder is treated as the reference model. Explicit perturbative formulas are obtained for three special classes of spin ladders.Comment: 4 page

    Sensitive detection of photoexcited carriers by resonant tunneling through a single quantum dot

    Full text link
    We show that the resonant tunnel current through a single energy level of an individual quantum dot within an ensemble of dots is strongly sensitive to photoexcited holes that become bound in the close vicinity of the dot. The presence of these holes lowers the electrostatic energy of the quantum dot state and switches the current carrying channel from fully open to fully closed with a high on/off ratio (> 50). The device can be reset by means of a bias voltage pulse. These properties are of interest for charge sensitive photon counting devices.Comment: 5 pages, 4 figure
    • …
    corecore