22,553 research outputs found

    Genetic algorithms: a tool for optimization in econometrics - basic concept and an example for empirical applications

    Get PDF
    This paper discusses a tool for optimization of econometric models based on genetic algorithms. First, we briefly describe the concept of this optimization technique. Then, we explain the design of a specifically developed algorithm and apply it to a difficult econometric problem, the semiparametric estimation of a censored regression model. We carry out some Monte Carlo simulations and compare the genetic algorithm with another technique, the iterative linear programming algorithm, to run the censored least absolute deviation estimator. It turns out that both algorithms lead to similar results in this case, but that the proposed method is computationally more stable than its competitor. --Genetic Algorithm,Semiparametrics,Monte Carlo Simulation

    Evolutionary model type selection for global surrogate modeling

    Get PDF
    Due to the scale and computational complexity of currently used simulation codes, global surrogate (metamodels) models have become indispensable tools for exploring and understanding the design space. Due to their compact formulation they are cheap to evaluate and thus readily facilitate visualization, design space exploration, rapid prototyping, and sensitivity analysis. They can also be used as accurate building blocks in design packages or larger simulation environments. Consequently, there is great interest in techniques that facilitate the construction of such approximation models while minimizing the computational cost and maximizing model accuracy. Many surrogate model types exist ( Support Vector Machines, Kriging, Neural Networks, etc.) but no type is optimal in all circumstances. Nor is there any hard theory available that can help make this choice. In this paper we present an automatic approach to the model type selection problem. We describe an adaptive global surrogate modeling environment with adaptive sampling, driven by speciated evolution. Different model types are evolved cooperatively using a Genetic Algorithm ( heterogeneous evolution) and compete to approximate the iteratively selected data. In this way the optimal model type and complexity for a given data set or simulation code can be dynamically determined. Its utility and performance is demonstrated on a number of problems where it outperforms traditional sequential execution of each model type

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Ex-vessel Pricing and IFQs: A Strategic Approach

    Get PDF
    In this paper, intraseasonal fishing is modeled as a differential game between fishermen in a total allowable catch–regulated fishery with and without individual fishing quotas (IFQs). Heterogeneous harvest values are included by incorporating time-specific harvest costs and a stock effect into fishermen’s profit functions. I also allow for strategic interaction among fishermen via ex-vessel price dynamics. The equilibrium harvest strategies of the differential games are solved numerically through the use of a genetic algorithm. I demonstrate how different harvesting sector environments lead to varying degrees of ex-vessel price increases when IFQs are implemented. The primary result shows that possible margins for competition among fishermen, beyond competition for a greater share of the total allowable catch, can still exist under IFQ management and may be substantial enough to be able to prevent sizeable rent transfers from the processing sector to the harvesting sector.individual fishing quotas, property rights, differential games, genetic algorithm
    • …
    corecore