23,250 research outputs found

    f-VAEGAN-D2: A Feature Generating Framework for Any-Shot Learning

    Full text link
    When labeled training data is scarce, a promising data augmentation approach is to generate visual features of unknown classes using their attributes. To learn the class conditional distribution of CNN features, these models rely on pairs of image features and class attributes. Hence, they can not make use of the abundance of unlabeled data samples. In this paper, we tackle any-shot learning problems i.e. zero-shot and few-shot, in a unified feature generating framework that operates in both inductive and transductive learning settings. We develop a conditional generative model that combines the strength of VAE and GANs and in addition, via an unconditional discriminator, learns the marginal feature distribution of unlabeled images. We empirically show that our model learns highly discriminative CNN features for five datasets, i.e. CUB, SUN, AWA and ImageNet, and establish a new state-of-the-art in any-shot learning, i.e. inductive and transductive (generalized) zero- and few-shot learning settings. We also demonstrate that our learned features are interpretable: we visualize them by inverting them back to the pixel space and we explain them by generating textual arguments of why they are associated with a certain label.Comment: Accepted at CVPR 201

    GAN Augmented Text Anomaly Detection with Sequences of Deep Statistics

    Full text link
    Anomaly detection is the process of finding data points that deviate from a baseline. In a real-life setting, anomalies are usually unknown or extremely rare. Moreover, the detection must be accomplished in a timely manner or the risk of corrupting the system might grow exponentially. In this work, we propose a two level framework for detecting anomalies in sequences of discrete elements. First, we assess whether we can obtain enough information from the statistics collected from the discriminator's layers to discriminate between out of distribution and in distribution samples. We then build an unsupervised anomaly detection module based on these statistics. As to augment the data and keep track of classes of known data, we lean toward a semi-supervised adversarial learning applied to discrete elements.Comment: 5 pages, 53rd Annual Conference on Information Sciences and Systems, CISS 201
    corecore