3 research outputs found

    A Dirichlet Process based type-1 and type-2 fuzzy modeling for systematic confidence bands prediction

    Get PDF
    This paper presents a new methodology for fuzzy logic systems modeling based on the Dirichlet process Gaussian mixture models (DPGMM). The proposed method simultaneously allows for the systematic elicitation of confidence bands as well as the automatic determination of model complexity. This work is new since existing fuzzy model elicitation techniques use ad hoc methods for confidence band estimations, which do not meet the stringent requirements of today's challenging environments where data are sparse, incomplete, and characterized by noise as well as uncertainties. The proposed approach involves an integration of fuzzy and Bayesian topologies and allows for the generation of confidence bands based on both the random and linguistic uncertainties embedded in the data. Additionally, the proposed method provides a “right-first time approach” to fuzzy modeling as it does not require an iterative model complexity determination. In order to see how the proposed framework performs across a variety of challenging data modeling problems, the proposed approach was tested on a nonlinear synthetic dataset as well as two real multidimensional datasets generated by the authors from materials science and bladder cancer studies. Results show that the proposed approach consistently provides better generalization performances than other well-known soft computing modeling frameworks-in some cases, improvements of up to 20% in modeling accuracy were achieved. The proposed method also provides the capability to handle uncertainties via the generation of systematic confidence intervals for informing on model reliability. These results are significant since the generic methodologies developed in this paper should help material scientists as well as clinicians, for example, assess the risks involved in making informed decisions based on model predictions

    Nonlinear Controller Design for UAVs with Time-Varying Aerodynamic Uncertainties

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are here and they are here to stay. Unmanned Aviation has expanded significantly in recent years and research and development in the field of navigation and control have advanced beyond expectations. UAVs are currently being used for defense programs around the world but the range of applications is expected to grow in the near future, with civilian applications such as environmental and aerial monitoring, aerial surveillance and homeland security being some representative examples. Conventional and commercially available small-scale UAVs have limited utilization and applicability to executing specific short-duration missions because of limitations in size, payload, power supply and endurance. This fact has already marked the dawn of a new era of more powerful and versatile UAVs (e.g. morphing aircraft), able to perform a variety of missions. This dissertation presents a novel, comprehensive, step-by-step, nonlinear controller design framework for new generation, non-conventional UAVs with time-varying aerodynamic characteristics during flight. Controller design for such UAVs is a challenging task mainly due to uncertain aerodynamic parameters in the UAV mathematical model. This challenge is tackled by using and implementing μ-analysis and additive uncertainty weighting functions. The technique described herein can be generalized and applied to the class of non-conventional UAVs, seeking to address uncertainty challenges regarding the aircraft\u27s aerodynamic coefficients
    corecore