2 research outputs found

    Fuzzy Bi-level Decision-Making Techniques: A Survey

    Full text link
    © 2016 the authors. Bi-level decision-making techniques aim to deal with decentralized management problems that feature interactive decision entities distributed throughout a bi-level hierarchy. A challenge in handling bi-level decision problems is that various uncertainties naturally appear in decision-making process. Significant efforts have been devoted that fuzzy set techniques can be used to effectively deal with uncertain issues in bi-level decision-making, known as fuzzy bi-level decision-making techniques, and researchers have successfully gained experience in this area. It is thus vital that an instructive review of current trends in this area should be conducted, not only of the theoretical research but also the practical developments. This paper systematically reviews up-to-date fuzzy bi-level decisionmaking techniques, including models, approaches, algorithms and systems. It also clusters related technique developments into four main categories: basic fuzzy bi-level decision-making, fuzzy bi-level decision-making with multiple optima, fuzzy random bi-level decision-making, and the applications of bi-level decision-making techniques in different domains. By providing state-of-the-art knowledge, this survey paper will directly support researchers and practitioners in their understanding of developments in theoretical research results and applications in relation to fuzzy bi-level decision-making techniques

    Improved two-phase solution strategy for multiobjective fuzzy stochastic linear programming problems with uncertain probability distribution

    Get PDF
    Multiobjective Fuzzy Stochastic Linear Programming (MFSLP) problem where the linear inequalities on the probability are fuzzy is called a Multiobjective Fuzzy Stochastic Linear Programming problem with Fuzzy Linear Partial Information on Probability Distribution (MFSLPPFI). The uncertainty presents unique difficulties in constrained optimization problems owing to the presence of conflicting goals and randomness surrounding the data. Most existing solution techniques for MFSLPPFI problems rely heavily on the expectation optimization model, the variance minimization model, the probability maximization model, pessimistic/optimistic values and compromise solution under partial uncertainty of random parameters. Although these approaches recognize the fact that the interval values for probability distribution have important significance, nevertheless they are restricted by the upper and lower limitations of probability distribution and neglected the interior values. This limitation motivated us to search for more efficient strategies for MFSLPPFI which address both the fuzziness of the probability distributions, and the fuzziness and randomness of the parameters. The proposed strategy consists two phases: fuzzy transformation and stochastic transformation. First, ranking function is used to transform the MFSLPPFI to Multiobjective Stochastic Linear Programming Problem with Fuzzy Linear Partial Information on Probability Distribution (MSLPPFI). The problem is then transformed to its corresponding Multiobjective Linear Programming (MLP) problem by using a-cut technique of uncertain probability distribution and linguistic hedges. In addition, Chance Constraint Programming (CCP), and expectation of random coefficients are applied to the constraints and the objectives respectively. Finally, the MLP problem is converted to a single-objective Linear Programming (LP) problem via an Adaptive Arithmetic Average Method (AAAM), and then solved by using simplex method. The algorithm used to obtain the solution requires fewer iterations and faster generation of results compared to existing solutions. Three realistic examples are tested which show that the approach used in this study is efficient in solving the MFSLPPFI
    corecore