6 research outputs found

    Extensions of LINMAP model for multi criteria decision making with grey numbers

    Get PDF
    The linear programming technique for multidimensional analysis of preference, known as LINMAP is one of the existing well-known ideal seeking methods for multi attribute decision making problems. This method originally is proposed under crisp and deterministic circumstances. However, uncertainty is an indubitable property of decision making problems. In this paper, a new version of LINMAP-G is proposed where the decision maker's judgments are expressed as grey numbers. Like original LINMAP method, the grey ideal solution and attributes weight vector is determined and alternatives are ranked according to their weighted distance from determined ideal point. Application of the proposed method is illustrated in two numerical examples

    City Sustainable Development Evaluation Based on Hesitant Multiplicative Fuzzy Information

    Get PDF
    Sustainable development evaluation is the basis of city sustainable development research, and effective evaluation is the foundation for guiding the formulation and implementation of sustainable development strategy. In this paper, we provided a new city sustainable development evaluation method called hesitant multiplicative fuzzy TODIM (HMF-TODIM). The main advantage of this method is that it can deal with the subjective preference information of the decision-makers. The comparison study of existing methods and HMF-TODIM is also carried out. Additionally, real case analysis is presented to show the validity and superiority of the proposed method. Research results in this paper can provide useful information for the construction of sustainable cities

    A general multi-attribute multi-scale decision making method based on dynamic linmap for property perceived service quality evaluation

    Get PDF
    The scientific evaluation of property perceived service quality (PPSQ) needs multi-stage, multi-source and large-group perceived information, which is deemed to be the decision problem for dynamic, heterogeneous and large-scale data processing. Aiming at the problem, we propose a general multi-attribute multi-scale (MAMS) method based on the dynamic linear programming technique for multi-dimensional analysis of preference (LINMAP). In the dynamic LINMAP model, the classic MAMS matrix is introduced and extended into a general form. The dynamic LINMAP model is constructed by defining dynamic consistency and dynamic inconsistency. The time series weight is determined by Orness method. The new method adapts to the requirements of modern PPSQ. Finally, we verify the feasibility and effectiveness of dynamic LINMAP method by analyzing a PPSQ evaluation example. The new method improves the traditional PPSQ evaluation, and provides a perspective for large-scale data processing by the classic decision method. First published online 23 June 202

    Frank Aggregation Operators for Triangular Interval Type-2 Fuzzy Set and Its Application in Multiple Attribute Group Decision Making

    Get PDF
    This paper investigates an approach to multiple attribute group decision-making (MAGDM) problems, in which the individual assessments are in the form of triangle interval type-2 fuzzy numbers (TIT2FNs). Firstly, some Frank operation laws of triangle interval type-2 fuzzy set (TIT2FS) are defined. Secondly, some Frank aggregation operators such as the triangle interval type-2 fuzzy Frank weighted averaging (TIT2FFWA) operator and the triangle interval type-2 fuzzy Frank weighted geometric (TIT2FFWG) operator are developed for aggregation TIT2FNs. Furthermore, some desirable properties of the two aggregation operators are analyzed in detail. Finally, an approach based on TIT2FFWA (or TIT2FFWG) operator to solve MAGDM is developed. An illustrative example about supplier selection is provided to illustrate the developed procedures. The results demonstrate the practicality and effectiveness of our new method

    Fuzzy multicriteria analysis and its applications for decision making under uncertainty

    Get PDF
    Multicriteria decision making refers to selecting or ranking alternatives from available alternatives with respect to multiple, usually conflicting criteria involving either a single decision maker or multiple decision makers. It often takes place in an environment where the information available is uncertain, subjective and imprecise. To adequately solve this decision problem, the application of fuzzy sets theory for adequately modelling the uncertainty and imprecision in multicriteria decision making has proven to be effective. Much research has been done on the development of various fuzzy multicriteria analysis approaches for effectively solving the multicriteria decision making problem, and numerous applications have been reported in the literature. In general, existing approaches can be categorized into (a) multicriteria decision making with a single decision maker and (b) multicriteria group decision making. Existing approaches, however, are not totally satisfactory due to various shortcomings that they suffer from including (a) the inability to adequately model the uncertainty and imprecision of human decision making, (b) the failure to effectively handle the requirements of decision maker(s), (c) the tedious mathematical computation required, and (d) cognitively very demanding on the decision maker(s). This research has developed four novel approaches for effectively solving the multicriteria decision making problem under uncertainty. To effectively reduce the cognitive demand on the decision maker, a pairwise comparison based approach is developed in Chapter 4 for solving the multicriteria problem under uncertainty. To adequately meet the interest of various stakeholders in the multicriteria decision making process, a decision support system (DSS) based approach is introduced in Chapter 5. In Chapter 6, a consensus oriented approach is presented in multicriteria group decision making on which a DSS is proposed for facilitating consensus building in solving the multicriteria group decision making problem. In Chapter 7, a risk-oriented approach is developed for adequately modelling the inherent risk in multicriteria group decision making with the use of the concept of ideal solutions so that the complex and unreliable process of comparing fuzzy utilities usually required in fuzzy multicriteria analysis is avoided. Empirical studies of four real fuzzy multicriteria decision making problems are presented for illustrating the applicability of the approaches developed in solving the multicriteria decision making problem. A hospital location selection problem is discussed in Chapter 8. An international distribution centre location problem is illustrated in Chapter 9. A supplier selection problem is presented in Chapter 10. A hotel location problem is discussed in Chapter 11. These studies have shown the distinct advantages of the approaches developed respectively in this research from different perspectives in solving the multicriteria decision making problem
    corecore