530 research outputs found

    Application of Fuzzy and Conventional Forecasting Techniques to Predict Energy Consumption in Buildings

    Get PDF
    This paper presents the implementation and analysis of two approaches (fuzzy and conventional). Using hourly data from buildings at the University of Granada, we have examined their electricity demand and designed a model to predict energy consumption. Our proposal was conducted with the aid of time series techniques as well as the combination of artificial neural networks and clustering algorithms. Both approaches proved to be suitable for energy modelling although nonfuzzy models provided more variability and less robustness than fuzzy ones. Despite the relatively small difference between fuzzy and nonfuzzy estimates, the results reported in this study show that the fuzzy solution may be useful to enhance and enrich energy predictions.Ministerio de Ciencia e Innovación” (Spain) (Grant PID2020-112495RB-C21MCIN/AEI/10.13039/501100011033) and from the I+D+i FEDER 2020 project B-TIC-42-UGR20 “Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía.”Next Generation EU” Margaritas Salas aids

    Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A Survey

    Get PDF
    Major assumptions in computational intelligence and machine learning consist of the availability of a historical dataset for model development, and that the resulting model will, to some extent, handle similar instances during its online operation. However, in many real world applications, these assumptions may not hold as the amount of previously available data may be insufficient to represent the underlying system, and the environment and the system may change over time. As the amount of data increases, it is no longer feasible to process data efficiently using iterative algorithms, which typically require multiple passes over the same portions of data. Evolving modeling from data streams has emerged as a framework to address these issues properly by self-adaptation, single-pass learning steps and evolution as well as contraction of model components on demand and on the fly. This survey focuses on evolving fuzzy rule-based models and neuro-fuzzy networks for clustering, classification and regression and system identification in online, real-time environments where learning and model development should be performed incrementally. (C) 2019 Published by Elsevier Inc.Igor Škrjanc, Jose Antonio Iglesias and Araceli Sanchis would like to thank to the Chair of Excellence of Universidad Carlos III de Madrid, and the Bank of Santander Program for their support. Igor Škrjanc is grateful to Slovenian Research Agency with the research program P2-0219, Modeling, simulation and control. Daniel Leite acknowledges the Minas Gerais Foundation for Research and Development (FAPEMIG), process APQ-03384-18. Igor Škrjanc and Edwin Lughofer acknowledges the support by the ”LCM — K2 Center for Symbiotic Mechatronics” within the framework of the Austrian COMET-K2 program. Fernando Gomide is grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) for grant 305906/2014-3

    A NEW HYBRID FUZZY TIME SERIES FORECASTING MODEL BASED ON COMBINING FUZZY C-MEANS CLUSTERING AND PARTICLE SWAM OPTIMIZATION

    Get PDF
    Fuzzy time series (FTS) model is one of the effective tools that can be used to identify factors in order to solve the complex process and uncertainty. Nowadays, it has been widely used in many forecasting problems. However, establishing effective fuzzy relationships groups, finding proper length of each interval, and building defuzzification rule are three issues that exist in FTS model. Therefore, in this paper, a novel FTS forecasting model based on fuzzy C-means (FCM) clustering and particle swarm optimization (PSO) was developed to enhance the forecasting accuracy. Firstly, the FCM clustering is used to divide the historical data into intervals with different lengths. After generating interval, the historical data is fuzzified into fuzzy sets. Following, fuzzy relationship groups were established based on the appearance history of the fuzzy sets on the right-hand side of the fuzzy logical relationships with the aim to serve for calculating the forecasting output.  Finally, the proposed model combined with PSO algorithm was applied to adjust interval lengths and find proper intervals in the universe of discourse for obtaining the best forecasting accuracy. To verify the effectiveness of the forecasting model, three numerical datasets (enrolments data of the University of Alabama, the Taiwan futures exchange –TAIFEX data and yearly deaths in car road accidents in Belgium) are selected to illustrate the proposed model. The experimental results indicate that the proposed model is better than any existing forecasting models in term of forecasting accuracy based on the first – order and high-order FTS

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Evolving Clustering Algorithms And Their Application For Condition Monitoring, Diagnostics, & Prognostics

    Get PDF
    Applications of Condition-Based Maintenance (CBM) technology requires effective yet generic data driven methods capable of carrying out diagnostics and prognostics tasks without detailed domain knowledge and human intervention. Improved system availability, operational safety, and enhanced logistics and supply chain performance could be achieved, with the widespread deployment of CBM, at a lower cost level. This dissertation focuses on the development of a Mutual Information based Recursive Gustafson-Kessel-Like (MIRGKL) clustering algorithm which operates recursively to identify underlying model structure and parameters from stream type data. Inspired by the Evolving Gustafson-Kessel-like Clustering (eGKL) algorithm, we applied the notion of mutual information to the well-known Mahalanobis distance as the governing similarity measure throughout. This is also a special case of the Kullback-Leibler (KL) Divergence where between-cluster shape information (governed by the determinant and trace of the covariance matrix) is omitted and is only applicable in the case of normally distributed data. In the cluster assignment and consolidation process, we proposed the use of the Chi-square statistic with the provision of having different probability thresholds. Due to the symmetry and boundedness property brought in by the mutual information formulation, we have shown with real-world data that the algorithm’s performance becomes less sensitive to the same range of probability thresholds which makes system tuning a simpler task in practice. As a result, improvement demonstrated by the proposed algorithm has implications in improving generic data driven methods for diagnostics, prognostics, generic function approximations and knowledge extractions for stream type of data. The work in this dissertation demonstrates MIRGKL’s effectiveness in clustering and knowledge representation and shows promising results in diagnostics and prognostics applications

    Low-latency, query-driven analytics over voluminous multidimensional, spatiotemporal datasets

    Get PDF
    2017 Summer.Includes bibliographical references.Ubiquitous data collection from sources such as remote sensing equipment, networked observational devices, location-based services, and sales tracking has led to the accumulation of voluminous datasets; IDC projects that by 2020 we will generate 40 zettabytes of data per year, while Gartner and ABI estimate 20-35 billion new devices will be connected to the Internet in the same time frame. The storage and processing requirements of these datasets far exceed the capabilities of modern computing hardware, which has led to the development of distributed storage frameworks that can scale out by assimilating more computing resources as necessary. While challenging in its own right, storing and managing voluminous datasets is only the precursor to a broader field of study: extracting knowledge, insights, and relationships from the underlying datasets. The basic building block of this knowledge discovery process is analytic queries, encompassing both query instrumentation and evaluation. This dissertation is centered around query-driven exploratory and predictive analytics over voluminous, multidimensional datasets. Both of these types of analysis represent a higher-level abstraction over classical query models; rather than indexing every discrete value for subsequent retrieval, our framework autonomously learns the relationships and interactions between dimensions in the dataset (including time series and geospatial aspects), and makes the information readily available to users. This functionality includes statistical synopses, correlation analysis, hypothesis testing, probabilistic structures, and predictive models that not only enable the discovery of nuanced relationships between dimensions, but also allow future events and trends to be predicted. This requires specialized data structures and partitioning algorithms, along with adaptive reductions in the search space and management of the inherent trade-off between timeliness and accuracy. The algorithms presented in this dissertation were evaluated empirically on real-world geospatial time-series datasets in a production environment, and are broadly applicable across other storage frameworks
    • …
    corecore