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Tis paper presents the implementation and analysis of two approaches (fuzzy and conventional). Using hourly data from
buildings at the University of Granada, we have examined their electricity demand and designed a model to predict energy
consumption. Our proposal was conducted with the aid of time series techniques as well as the combination of artifcial neural
networks and clustering algorithms. Both approaches proved to be suitable for energy modelling although nonfuzzy models
provided more variability and less robustness than fuzzy ones. Despite the relatively small diference between fuzzy and nonfuzzy
estimates, the results reported in this study show that the fuzzy solution may be useful to enhance and enrich energy predictions.

1. Introduction

Electricity is one of the most important inventions science
has conferred on humanity. It has become an essential aspect
of people’s work and day-to-day life. Today, electricity is
a pivotal source of energy, and its growing usage worldwide
is bringing new challenges in the energy efciency feld.
Besides, the recent advances in technology are providing us
with a vast amount of information that is not easily treatable
for its heterogeneity [1]. Nonetheless, even though our
society tends towards more sustainable development, it is
not a trivial task to create tools for the accurate treatment
andmonitoring of energy [2, 3].Tus, being prepared for the
future may be a key to solve energy waste and adequate
energy efciency in our buildings.

Energy consumption forecasting is a critical feature for
environmentally friendly buildings as well as an efective
strategy to decrease energy consumption and its associated
gas emissions along with the resulting economic impact
[4, 5]. As a result, energy demand forecasting has been
addressed in many scenarios so far [3, 6–9]. Since this
problem has in nature historical-oriented data, i.e., we al-
ways attempt to fnd dependencies between past values to
model future ones, most of the authors employ time-series

techniques to handle it. Plus, a variant that is gaining in
popularity is the combination of fuzzy logic with time-series
methods [2, 10–16].

What makes the fuzzy time series suitable for these sorts
of problems is its capability to improve the comprehension
of the models. Tat is to say, fuzzy logic provides us with
a description of the data in linguistic variables, i.e., by words
instead of numerically. Nonetheless, the defnition of the
fuzzy sets requires introducing a new parameter and,
therefore, more complexity to the solution, which is the
number of intervals. Originally, some authors defned that
the best number of intervals should be seven with a constant
length [2, 3]. However, the researchers soon realized that it
afected the predictive capacity of the model [17].

Today, these intervals are defned mainly by optimiza-
tion algorithms. In [18], the authors presented a fuzzy so-
lution for big data using time-series techniques. Te authors
implemented an automatic clustering algorithm to group the
historical data into intervals of diferent lengths. Teir
models outperformed classical methods bringing with them
several advantages: easy-to-implement, accuracy, and in-
terpretability. Additionally, some authors have incorporated
neural networks into their proposals, enhancing, even more,
their estimates. Bas et al. [19] employed an artifcial neural
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network to determine fuzzy relationships to improve the
accuracy of the forecasting performance. Cagcag Yolcu and
Lam [20] combined a robust approach for fuzzy time series
by analysing how the prediction performance of the models
is afected by the outliers. Teir results were more accurate
and robust. It is important to note that the authors of the
previous two studies predicted directly using neural net-
works. Tis approach will be followed in our study in order
to compare our results with the reference series.

Many other approaches have been suggested in the
literature to solve energy demand prediction [17], starting
with the traditional ARIMA approach [21–24] and moving
towards more advanced deep learning techniques [25–31].
Other research works are by Pérez-Chacón et al. [32] with
their algorithm to predict big data time series based on
a pattern sequence method. Tey used data from Uruguay’s
electricity demand to validate their solution. An interesting
COVID-inspired algorithm was proposed by Mart́ınez-
Álvarez et al. [33] who used electricity load time series as
an application case, showing outstanding performance.
Other hybrid algorithms have been proposed by Ruiz et al.
[34] in which the authors combine amemetic algorithmwith
recurrent neural networks to predict energy consumption in
public buildings. An ensemble of several predictive models
was introduced in [35] where three machine learning al-
gorithms were used (decision trees, gradient boosted trees,
and random forest). Teir combination successfully out-
performed other big data time-series solutions.

We can also mention some applications of fuzzy logic to
time series [10, 17–20, 36, 37]. Some research as to a com-
bination of deep learning and fuzzy time series is proposed
in [18]. Te authors implemented a LSTM-based forecasting
model to predict energy consumption. Tey utilised the
fuzzy rules to create preliminary estimates that were used to
support the fnal prediction and to modify the learning
process. In [17], we can fnd another hybrid forecasting
system based on fuzzy time series for wind speed estimation.
Here, the fuzzy time-series method was used to optimise
a multiobjective algorithm to balance the confict between
accuracy and stability. Other similar studies can be cited like
the convolutional neural networks of Sadaei et al. [36] or the
integration of heuristics for renewable energy forecasting in
[38]. Nonetheless, all the authors agree on the same point,
the accuracy of the models using fuzzy logic is not good
enough, and they use it only as a complement to their
solutions.

Following the philosophy of the previous studies, the
present work pursues to implement and compare several
forecasting techniques to predict energy consumption in
public buildings, more specifcally, at the University of
Granada.What motivates our study is the lack of approaches
that exploits the use of fuzzy logic to predict energy con-
sumption.Temain advantage of applying fuzzy logic is that
it provides us with extra information which can be inter-
preted as justifying changes in consumption. It may give
rules such as «on Monday in the morning, the consumption
in summer is low», and opposite to conventional ap-
proaches, the latter cannot provide such information.
Nonetheless, these fuzzy-orientedmodels have the drawback

of being less accurate than the numerical ones. Tis fact is
somehow understandable as the fuzzy rules attempt to join
information. Terefore, our frst goal is to implement a so-
lution using fuzzy systems and optimise them so as to get
a comparable precision. To do so, we propose a hybrid
method of fuzzy time series and clustering algorithms. Te
rest of the paper is structured as follows. Section 2 describes
the proposed methodology, data used, and its treatment
along with the methods applied. Section 3 introduces the
experiments conducted. Section 4 gathers the main results
obtained in this study. And Section 5 summarises the
conclusions attained.

2. Methodology

Tis section is pivotal to properly understand the rest of
the study along with the decisions made throughout this
research. As a general overview of the steps followed in
this research, we can examine Figure 1. First, we obtain
the energy information directly from the meters, which
may present missing values, errors, or other problems.
After that, we cleaned, processed, and selected the data we
planned to use for comparison. Since our frst aim was to
compare the fuzzy implementations with the conventional
ones, we carried out the nonfuzzy predictions and tested
several parameters and granularities so as to get an ad-
vance of the estimates’ behaviour. Ten, we selected the
appropriate granularity and settled several considerations
and applied the fuzzy approach. Both, fuzzy and nonfuzzy
results were stored for a fnal comparison and analysis.
Finally, we draw some interesting conclusions from our
results altogether.

2.1. Dataset. First of all, prior to defning the bulk of our
methodology, it is important to know the data we are
training with.Te time series in hand belongs tometers from
the University of Granada.Temeasurements were taken on
an hourly basis and are expressed in kWh. Most of the series
comprises 5 years of data, from 2013 to 2018. Some present
slightly smaller sizes owing to the date of installation of the
metering systems and therefore the start of the sample
collection.

Our data consist of a set of meters. Each device measures
several buildings. Accordingly, the time series and building
distribution are exposed in Table 1. For privacy reasons, the
name of the buildings is not shown.

We selected the series according to the quality of the
data. We utilised 10 series out of 20 available. What mo-
tivated this decision was the quality of the data and the
likeliness of the series. In other words, the sheer number of
missing values in some cases was excessively high, and as an
objective criterion, we discarded the ones with the higher
absence of data. Besides, it also prevented biased results by
the imputation of missing values.

In many cases, empty registers can be found in the
middle of the series presenting more than 6months of
empty records, with some exceptions such as the one
displayed in Figure 2. Te fgure represents the energy
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consumption of one of the buildings during the morning
period. It can easily be seen that the motive of our choice is
that, from 2013 to 2017, we do not have any relevant
information except for a little more than a year. It is rather
straightforward to see how the outlier frontier was not
adjusted properly as most of the consumption is outside.
Also, the lack of registers with a correct record makes the
mean and median well below the actual value. Opposite to
this, we have Figure 3.

As we mentioned before, our data are collected hourly
and consequently, we split the series into three-time slots:
morning, between 8 h and 15 h; evening, from 16 h to 22 h;
and night, starting at 22 h until 6 h. Tose intervals were
chosen according to the morning and afternoon shifts,
taking into account the classes. An example has been already
presented in Figure 2 with the morning series of the
building. Another representative series we selected is
depicted in Figure 3. In this case, in contrast to Figure 2, we
can appreciate a more normalised behaviour in consump-
tion. Most of the records were properly collected with some
exceptions (see the frst month of 2017).

2.2. Data Preparation. After describing the data we are
using, we must mention how we preprocessed the data for
our models. Te data used for our workfow are made of 10
energy time series on an hourly basis from meters at the
University of Granada. Tese data were transformed into
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Figure 1: General scheme of the proposed methodology.

Table 1: Buildings’ description of the database.

Building Meters available Meters used
B1 4 2
B2 5 4
B3 4 1
B4 7 3

En
er

gy
 C

on
su

m
pt

io
n 

(k
W

h)

400

300

200

100

0
2013 2014 2015 2016 2017 2018

mean
median
outlier frontier

Figure 2: Example of discarded time-series, representing the mean
(red), median (green), and the outlier region (dotted orange) of the
consumption (blue).
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Figure 3: Example of one of the energy time series chosen.
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fve diferent series whose prediction could be interesting: (1)
hourly (actual data), (2) morning [8, 15]h, (3) evening
[16, 22]h, (4) night [23, 7]h, and (5) daily (accumulated
consumption).

In doing this, we created a 5-element decomposition of
each series and thus a set of 50 sets of data. We will apply
a fuzzy treatment to each of these new series with the
clustering algorithms. Tey will be used in the forecasting
stage as well. Furthermore, it will generate a fuzzy time series
for each clustering method. In other words, 150 fuzzy series
are to be added to the 50 previously created. As a result, we
obtained 200 time-series for each forecasting method.

2.3. Methods Applied. Te current section introduces all the
methods we have applied to the aforementioned data already
prepared. In this work, we implemented two well-known
machine learning techniques, multilayer perceptron (MLP)
and long short-term memory (LSTM) neural networks,
along with three clustering methods, namely, k-Means (kM),
density-based spatial clustering of applications with noise
(DBSCAN, DB in short), and hierarchical clustering (HC).
Te two frst methods were used as a predictor in both fuzzy
and conventional approaches, and the other three were used
to defne the number of intervals for the fuzzy sets using the
triangular membership function.

MLP is a type of feed-forward neural network. Its
structure is mainly composed of three layers: input, hidden,
and output layer. Te input takes the data to be processed,
and the hidden layers get the results from the previous layer
and pass the information to the output layer. Each layer has
several neurons that use an activation function so as to move
the computations onward through a particular value (or
weight) between two neurons. In this case, the information is
processed in a forward fashion, i.e., from input to output [3].

On the other side, we adopted the LSTM. In contrast to
the MLP, where the data fow from back to front, LSTM has
recurrent connections allowing them to move the in-
formation back and forth. In this way, feedback from other
layers is provided [17]. Te choice to employ this model was
based not only on the wide range of successful applications
[26, 34, 39, 40] but also on its great fexibility and adaptation
when solving problems.

Te frst algorithm we implemented for procuring the
fuzzy variables was kM [18]. Tis is one of the most popular
techniques based on dividing the data into k groups. An
iterative procedure assigns randomly k points as centres (or
centroids). Ten, each sample is linked to a particular group
that minimises the error. Once all the points have been
associated with a cluster, it recalculates new centroids as the
mean of the member points. Tis process is iteratively re-
peated until certain stop criteria are fulflled.

Te second clustering algorithm is DB [36] that, as its
name indicates, is based on the detection of communities via
density features. Te defnition of community has two pa-
rameters: the number of instances and ϵ, being the latter the
distance needed to be considered in the vicinity of one
cluster. Tis feature is rather interesting as those points far
enough from all the centres are considered outliers.

Lastly, we implemented agglomerative or hierarchical
clustering (HC) [38]. In this technique, a distance metric is
defned, frst of all, as being plausible a metric with a cluster-
cluster or cluster-sample basis. In this way, all the points are
isolated and they progressively come together to the closest
cluster/sample creating new groups. Conceptually, it builds
a tree-based structure where the leaves represent the initial
data and each branch a specifc cluster.

For the fuzzifcation process, we implemented a Sugeno-
based inference system. It has multiple inputs and just one
output. In our implementation of the inference system, the
ANNs act as a black box generating functions to the related
inputs with outputs instead of using directly the in-
terpretable rules. Besides, we will be able to prevent the
defuzzifcation phase through the ANNs which leads us to
a more fexible approach. We utilised a triangular mem-
bership function like the one displayed in Figure 4. Tis
function allows us to get the membership degree to each of
the fuzzy sets. To this end, it is needed to know the limits and
the central point that will defne each fuzzy set. For instance,
the limits in the red set are 0 and 60 kWh and the central
point is 20.

Ten, having a time series t1,n of n values and a set C of m

centroids, we can defne a triangular function for each c ∈ C.
In doing so, we will obtain a matrix tm,n with the mem-
bership degrees of each centroid.

We should thoroughly take the number of lags l (pre-
vious values for prediction) of the time series as this will turn
the original series into l · m columns to be predicted, thereby
increasing the complexity of the problem.

Tese functions are defned by the centroid (e.g., k-
Means) or by the mean of each cluster (e.g., DBScan). Te
points that are not in the min and max of the distribution
were classifed as outliers. Te edges were built as follows.
Te cluster with the smallest values starts at 0 or the
minimum value of the cluster minus the standard deviation.
In the case of the cluster with the biggest values, it ends in the
value of the biggest value plus a standard deviation. In doing
this, we prevented the appearance of undetected outliers in
which their membership degrees were 0 and had a very high
(or low) consumption while they remained undetected. Te
outliers amongst clusters were eliminated by maximising the
Silhouette coefcient. Te outliers were processed the same
way in all the implemented algorithms. Tey were detected
by enlarging the edges of the distribution function or when
they fall into two diferent membership functions.

Finally, the representation of the proposed workfow is
depicted in Figure 5. First, the data are treated by the
clustering algorithm in the fuzzifcation process providing
the membership degrees and then the news information is
given to the forecasting model so as to obtain the predicted
value after defuzzifcation. Te use of the proposed fore-
casting models allows us to decide as to which output will be
provided, the fuzzy representation or the numerical one as is
shown in the fgure. Bearing in mind that the defuzzifcation
phase is not as important as the fuzzifcation part of the
implementation of our Sugeno-type inference system, this
stage is implicitly included in the ANNs that translate the
membership values into a straight prediction.
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3. Experiments

Te experiments conducted in this study are detailed in the
following paragraphs to provide a proper understanding of
the technologies adopted and the design of the trials.

Tis research project has been entirely developed in
Python 3.7. We employed four widely used libraries, namely,
Scikit-Learn, Keras, Pandas, and Bokeh. Scikit-Learn was used
to implement MLP and the clustering algorithms, DB, HC,
and kM. LSTM was implemented in Keras. Pandas was used
to manipulate our data and process the information. Finally,
Bokeh was utilised as a means for depicting our results.

We designed our experiments in several stages as can be
seen in Figure 6. Te frst is data collection and clustering
analysis based on the Silhouette coefcient. Second, we
predicted the entire series and analysed the nonfuzzy ap-
proaches and their results. It was examined both daily and
hourly granularities. Tird, we studied the performance of
the fuzzy-based solutions. Finally, we contrasted both fuzzy
and conventional solutions.

4. Results

Te results obtained from the prediction of the 200 time-
series generated are presented in this section and discussed
in the next one. Tey will be analysed according to the
forecasting method used. For simplicity reasons, we will
introduce a summary of the most remarkable outcomes;
otherwise, it would make it difcult for the reader to follow
the discussion.

As we can deduce from Figure 5, the frst experiments we
designed were in the fuzzifcation part. We had to set
a number of clusters so as to get how many functions we will
use in the next stage. We selected the Silhouette coefcient

and selected the best values accordingly. Interestingly, in
nearly none of the tests, the best number of clusters sur-
passed three. We skip these results considering them of no
great signifcance as they do not provide much further in-
formation to the reader. We will discuss this fact in the next
section. Having said that, let us introduce the most re-
markable experiments we thought out.

Since we intend to compare two approaches, a fuzzy-
based solution and the numerical one (or the nonfuzzy
approach), we present Table 2 frst, which gather the results
for the entire series on both a daily and an hourly basis.

In view of the fact that the fuzzy table with all the models
and experiments would be too large, we are going to split its
content into diferent tables and highlight the most signif-
icant results. Table 3 compares the clustering methods we
applied when using the MLP neural network. We imple-
mented three clustering algorithms, DBScan (DB), hierar-
chical clustering (HC), and k-Means (kM).

As an example of the prediction performed by one of the
models, we can see Figure 7. We do not put all the series
together (the two models, LSTM and MLP) in order to make
it easy to discern what is happening. Although some of them
follow the trend of the original time-series, others cannot ft
that well. In this piece of series, it is interesting to see how it
is not clear to tell from the fgure whether DB is the algo-
rithm with the highest error, but mathematically it is.

Similarly, we conducted the same experiments but using
LSTM. We can see the metrics obtained in Table 4.

Table 5 presents the results obtained after adjusting our
models with the hourly time series. We compared the three
clustering algorithms, DB, HC, and kM as well.

As we mentioned before, we do not want to make it
difcult for readers to follow our study; for this reason, we
will skip some results and we will go straight to the
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comparison table between fuzzy and nonfuzzy approaches.
SinceMLP has shown better error, Table 6 gathers the results
with this model and compares the best results of the fuzzy
solution versus the one without fuzzy logic applied.

As an illustrative example of the predictions, Figure 8
shows both conventional (blue series) and fuzzy solutions in
the same graph. Tis chart presents the evolution of con-
sumption on a daily basis.

5. Discussion

Tis section brings together the most signifcant results we
achieved from our experiments. As we mentioned in the
second paragraph of the previous section, we would like to
point out that the number of clusters was chosen by maxi-
mizing the Silhouette coefcient and selecting the most ap-
propriate value accordingly. Each cluster stands for
a membership function of its own. Most of the experiments
we carried out provided three as the optimal value although

there were some experiments in which the number of clusters
exceeded three according to our selection criteria. Having this
into consideration, the tags in our univariate time-series
defne a linguistic variable. For the three-cluster case, we
would have «low», «medium», and «high» consumption.
Similarly, given fve clusters, we tagged them as «very low»,
«low», «medium», «high», and «very high» consumption.
Knowing that the linguistic variables given to each of the
electricity meters were based on their consumption as the use
of each building difers, it was reasonable to assume that the
variables should behave uniformly in our scenario, not adding
much information on their own by the name.

Ten, we have to comment on some important aspects of
Table 2. Te table puts together the results of our models for
both daily and hourly granularities. From the table, we can
draw some conclusions. Te frst one is that virtually all the
experiments revealed MLP as the best predictor in both
granularities. Nevertheless, according to the MAE, only 6
out of 20 LSTM turned out to be better thanMLP in the daily
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one and 9 in the other set of experiments. However, we can
see how the R2 metric provides a much worse value in those
cases. Additionally, the diference between RMSE and the
MAE in such tests resulted to be higher than MLP’s which
gives us the hint thatMLP is havingmore robust estimates. It
is remarkable to note that both models enhanced their
predictions in terms of the R2 metric when working with the
hourly data. Tis can be a result of the amount of data
available in such a case.

Taking into account the errors made by the predictive
models and both granularities, the next step is to implement
the clustering methods. Tus, Tables 3 and 4 compare each
clustering algorithm using MLP and LSTM, respectively.
From Table 3 we might discard the use of DB as it did not
attain the best adjustment in any case. Furthermore, DB got
the third position according to all the metrics we used.
Regarding HC and kM, they achieved very similar results.
However, HC outperforms kM in 60% of the cases for the
RMSE and R2 metrics, and only for the MAE, they obtained
50% each. And what stands out in Table 4 is that DB
maintains its last position and only in M6 outperformed its
rivals which had a quite low R2. In this case, 5 out of 10 tests

give HC the best performance by RMSE and R2, and the
remaining 4 were for the kM algorithm.Temost interesting
aspect of Table 4 is that 7 out of 10 kM’s MAE were better
than HC’s, of which 4 repeated their behaviour from the
MLP model (meters 2, 5, 7, and 8; see Table 3).

Next, we have to pay attention to Table 5 which has the
metrics once trained our predictive models using the hourly
time-series. A closer inspection of the table shows a signif-
icant improvement in the DB algorithm. In addition to this,
all the metrics have been enhanced in all the cases. In fact,
now DB has the best scores in 8 out of 10 predictions
according to RMSE and R2 and 5 out of 10 with the MAE
metric. Te rest of them is distributed as follows: HC ob-
tained the best RMSE and R2 inM3 and the best MAE inM5;
kMwas the best for M2 according to the three metrics, and it
was the best rank in M7, M8, and M10 for the MAE. Tese
results reveal not only DB as the best clustering algorithm
but also a general improvement in the accuracy of the
predictions and better robustness using more data. Bear in
mind that the table utilised the hourly time series, and
therefore the models have more information to work with,
and this has to be the reason for this improvement.

Table 2: Comparison between LSTM and MLP models without using the fuzzy approach using the entire series.

Meter Model
Daily Hourly

RMSE MAE R2 RMSE MAE R2

M1
LSTM 146.1452 64.1385 0.7411 5.3348 1. 093 0.9177
MLP 125. 831 56.3078 0.8092 5.1306 1.5869 0.9239

M2
LSTM 223.3225 88.883 0.5515 10.9791 1.6636 0.8495
MLP 138.052 59.2156 0.8286 10.6 6 2.9834 0.858 

M3
LSTM 190.5074 87.7230 0.4206  .63 8 1.06 2 0.93 5
MLP 1 3. 906 51.9965 0.6713 4.7567 1.4236 0.9311

M4
LSTM 804.5589 170.6163 0.5776 11.1949 2.2656 0.9827
MLP 666.67 5 190.1642 0.7100 10.1513 2.6782 0.9858

M5
LSTM 447.4029 10 .5   0.5214 6.7374 1.0369 0.9766
MLP 379.0906 111.1212 0.656 6.701 0.9829 0.9769

M6
LSTM 218.1491 50.4770 0.5603 5.0652 0.6833 0.9541
MLP 179.573 50.0577 0.7020  .8017 1.0286 0.9588

M7
LSTM 232.0006 61.1003 0.7551 8.1263 0.6860 0.9419
MLP 202.1236 66.4395 0.81 1 7.8352 1.2313 0.9 60

M8
LSTM 98.5282 2 .3363 0.7554 4.3384 0.5955 0.9164
MLP 89.2251 32.0510 0.799  .0838 0.8277 0.9259

M9
LSTM 78.9721 30.2903 0.8466 4.2556 1.5538 0.8912
MLP 69.3567 31.2242 0.8817  .1723 1.7256 0.895 

M10
LSTM 213.9082 52.9707 0.7196 5.7286 1.039 0.9535
MLP 163.2353 63.7221 0.8367 5.5033 1.3785 0.9571

Bold value represents the best value between the two rows of each model.
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Table 3: Comparison of the diferent clustering techniques for the fuzzy-oriented approach with MLP on a daily basis.

Meter Method RMSE MAE R2

M1
DB 177.7155 120.7909 0.6172
HC 1  .8932 73.3900 0.7 56
kM 147.2462 77.8078 0.7372

M2
DB 229.1446 119.5351 0.5278
HC 182.6804 80.4405 0.6999
kM 162.8930 77.9993 0.761 

M3
DB 190.1826 104.0214 0.4226
HC 153.176 77.6672 0.625 
kM 168.7235 94.0590 0.5455

M4
DB 855.2163 313.5884 0.5228
HC 676.5370 210.2765 0.701 
kM 727.3272 235.0870 0.6548

M5
DB 416.8174 129.1178 0.5846
HC 390.0882 134.7437 0.6362
kM 383. 103 12 .1867 0.6 85

M6
DB 225.7441 85.4364 0.5291
HC 177.9789 66.921 0.7073
kM 194.6913 93.9808 0.6498

M7
DB 338.4739 166.1670 0.4788
HC 224.2768 82.0394 0.7712
kM 213.3 79 7 .578 0.7929

M8
DB 136.1172 81.3379 0.5331
HC 95.7162 34.4682 0.7691
kM 96.7354 28.9196 0.7642

M9
DB 114.5623 57.0771 0.6771
HC 75.4612 32.1241 0.8599
kM 71.236 29. 829 0.8752

M10
DB 259.4291 114.6123 0.5876
HC 171.0675 75.5993 0.8207
kM 191.8339 97.0186 0.7745

Bold value represents the best value among the three rows of each method. DB is DBScan, HC is hierarchical clustering, and kM is k-Means.
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Figure 7: Example of the hourly prediction performed by the MLP of one of the meters. Comparison of the diferent clustering methods
along with the conventional model.
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Te results shown in Table 6 indicate that both approaches
turned out to be very accurate as virtually all of them achieved
over 0.9 in R2. Further analysis of these predictions shows that
the fuzzy approach gives better results in 50% of the cases by
MAE and in 4 cases by RMSE and R2. Nonetheless, it is
interesting to note that we can fnd slight diferences between
them. Te biggest diference of R2 was 0.006 for the M2, the
tiniest with 0.00004 for the M4, and on average of 0.002.

Finally, as an illustrative example of the predictions,
we may take a look at Figure 8. As we can see, there is
a weekly pattern. Tere are two points, the lowest ones
that correspond to the weekends, and therefore it is
normal that they were lower than the rest. In any case,

what should attract our attention is that certain patterns
in this series are well predicted and they follow the
evolution adequately. However, intentionally, we show
two weeks (the last part of the graph) where the con-
sumption is slightly diferent. On this occasion, the
models struggled to follow the trend at frst, but they
promptly adjust the prediction in a better way. Te most
signifcant aspect of Figure 8 we would like to highlight is
that the fuzzy-oriented solutions managed to ft the
curves properly which is essential for our solution.

Having discussed the results obtained, it can be said that
both approaches are shown to be suitable to solve this problem
as both of them received the best score in half of the cases.

Table 4: Comparison of the diferent clustering techniques for the
fuzzy-oriented approach with LSTM on a daily basis.

Meter Method RMSE MAE R2

M1
DB 204.6027 94.4456 0.4926
HC 195.505 92.9729 0.5367
kM 216.1003 109.9226 0.4340

M2
DB 409.9392 307.3953 −0.5111
HC 280.1156 121.2162 0.2944
kM 252.8798 92. 339 0. 250

M3
DB 275.5571 117.3078 −0.2122
HC 211.321 92.0701 0.2871
kM 222.4379 107.1479 0.2101

M4
DB 1319.6981 654.4967 −0.1363
HC 978.9773 214.1039 0.3747
kM 960. 926 191. 6 9 0.3981

M5
DB 544.9214 154.6821 0.2901
HC 511. 9 3 114.9144 0.37 5
kM 511.5907 95.2821 0.3743

M6
DB 232.002 59.7434 0.5026
HC 269.5572 64.4206 0.3286
kM 253.0153 55.581 0.4085

M7
DB 425.5167 166.9462 0.1762
HC 286.3125 98.4231 0.6270
kM 296.6960 95. 022 0.5995

M8
DB 170.7479 41.8688 0.2653
HC 117.1675 29.4378 0.6541
kM 115.532 28.0 88 0.6637

M9
DB 207.3880 134.1462 −0.0581
HC 155.0012  1.3702 0.4089
kM 128.7002 45.2480 0.5925

M10
DB 337.4693 87.3844 0.3022
HC 251.8003 85.1934 0.6115
kM 274.7407 8 .9319 0.5375

Bold value represents the best value among the three rows of each method.
DB is DBScan, HC is hierarchical clustering, and kM is k-Means.

Table 5: Comparison of the diferent clustering techniques for the
fuzzy-oriented approach with MLP on an hourly basis.

Meter Method RMSE MAE R2

M1
DB 5.1093 1.6630 0.92 5
HC 5.3902 1.8563 0.9160
kM 5.2176 1.8483 0.9213

M2
DB 10.8719 2.5343 0.8524
HC 10.9243 2.7631 0.8510
kM 10.6  8 2.3971 0.8585

M3
DB 4.6532 0.955 0.9340
HC  .6 07 1.3267 0.93  
kM 4.9519 1.3331 0.9253

M4
DB 10.1662 2.3978 0.9857
HC 11.5014 2.7697 0.9817
kM 10.9031 2.7014 0.9836

M5
DB 6.8727 1.6164 0.9757
HC 6.9378 1.3631 0.9752
kM 7.2575 1.4105 0.9729

M6
DB  .6280 0.8201 0.9617
HC 4.6956 0.9210 0.9606
kM 4.9537 1.2178 0.9561

M7
DB 7.9172 1.3358 0.9  8
HC 7.9193 1.7544 0.9448
kM 7.9968 1.1567 0.9437

M8
DB  .1679 1.1607 0.9228
HC 4.2259 0.9397 0.9207
kM 4.1785 0.7979 0.9224

M9
DB  .18 5 1.6167 0.89 8
HC 4.2176 1.6730 0.8931
kM 4.2386 1.7501 0.8921

M10
DB 5.5571 1.3467 0.9563
HC 5.8465 1.6683 0.9516
kM 5.6554 1.2593 0.9547

Bold value represents the best value among the three rows of each method.
DB is DBScan, HC is hierarchical clustering, and kM is k-Means.
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6. Conclusions

In the course of this research, we implemented and com-
pared several fuzzy and nonfuzzy time-series methods.
Apart from the efectiveness shown in previous studies, the
fuzzy time series ofers extra utility as they provide us with,

not only a single value but an interval in which the objective
value is expected to be. Tis can be translated into a piece of
enriching information as there are many scenarios where
absolute certainties are uncommon, but trends and ap-
proximations have higher importance, as is the case of
energy efciency.

Table 6: Comparison between fuzzy and nonfuzzy approaches.

Meter Approach RMSE MAE R2

M1
Fuzzy 5.1093 1.6630 0.92 5

Nonfuzzy 5.1306 1.5869 0.9239
M2

Fuzzy 10.8719 2.53 3 0.8524
Nonfuzzy 10.6 6 2.9834 0.858 

M3
Fuzzy  .6532 0.955 0.93 0

Nonfuzzy 4.7567 1.4236 0.9311
M4

Fuzzy 10.1662 2.3978 0.9857
Nonfuzzy 10.1513 2.6782 0.9858

M5
Fuzzy 6.8727 1.6164 0.9757

Nonfuzzy 6.701 0.9829 0.9769
M6

Fuzzy  .6280 0.8201 0.9617
Nonfuzzy 4.8017 1.0286 0.9588

M7
Fuzzy 7.9172 1.3358 0.9448

Nonfuzzy 7.8352 1.2313 0.9 60
M8

Fuzzy 4.1679 1.1607 0.9228
Nonfuzzy  .0838 0.8277 0.9259

M9
Fuzzy 4.1845 1.6167 0.8948

Nonfuzzy  .1723 1.7256 0.895 
M10

Fuzzy 5.5033 1.3785 0.9571
Nonfuzzy 5.5571 1.3 67 0.9563

Bold values represent the best approach for each metric; that is to say, for each column (metric), we compare the two approaches (fuzzy and nonfuzzy), and
the best is highlighted in bold.
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Figure 8: Illustrative example of a daily prediction using MLP. Comparison between fuzzy and nonfuzzy models.
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Te methods implemented have shown great fexibility
during the whole process, from the creation of the fuzzy sets
to the fnal prediction. One of the limitations we should
mention is that this fexibility turns into a higher compu-
tational cost as several tests should be done prior to deciding
some of the parameters. Te second drawback is a fuzzy
representation of the series leading to a loss in terms of
accuracy, and we should balance whether this loss pays of or
not depending on the problem to solve. Although the fuzzy
models did not achieve the lowest error in all the cases, they
managed to maintain higher robustness compared with the
numerical ones. Furthermore, those cases in which the fuzzy
approaches ranked below presented a slight diference in
terms of error, i.e., both predictions were, in all cases, quite
similar.

Finally, we would like to highlight the overall perfor-
mance of the DBScan algorithm against the other clustering
algorithms. It is a surprising fnding that this method
achieved such good results in spite of not being mentioned
in the literature by previous authors.

Te studied models have demonstrated to have the
capability to predict energy consumption at the University of
Granada and its buildings. However, as future work, we
propose a method for optimal parameters search along with
the modifcation and experimentation with diferent
membership functions. Additionally, we propose the use of
density clustering and mean-shift algorithms that may ofer
good results in these kinds of problems.

Acronyms

DB: Density-based spatial clustering of applications
with noise

HC: Hierarchical clustering
kM: k-Means
LSTM: Long short-term memory
MAE: Mean absolute error
MLP: Multilayer perceptron
RMSE: Root mean square error.

Data Availability

Te data used in this study are not available for public access
due to privacy policies. We are committed to safeguarding
the privacy and confdentiality of the organizations involved
in this research. Sharing the data, even in an anonymized
form, would risk violating these privacy commitments and
could compromise the trust and confdentiality of our data
sources.

Conflicts of Interest

Te authors declare that there are no conficts of interest.

Acknowledgments

We acknowledge the fnancial support from “the Ministerio
de Ciencia e Innovación” (Spain) (Grant PID2020-112495RB-
C21 funded by MCIN/AEI/10.13039/501100011033) and
from the I+D+i FEDER 2020 project B-TIC-42-UGR20
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