8,738 research outputs found

    Extending FuzAtAnalyzer to approach the management of classical negation

    Get PDF
    FuzAtAnalyzer was conceived as a Java framework which goes beyond of classical tools in formal concept analysis. Specifically, it successfully incorporated the management of uncertainty by means of methods and tools from the area of fuzzy formal concept analysis. One limitation of formal concept analysis is that they only consider the presence of properties in the objects (positive attributes) as much in fuzzy as in crisp case. In this paper, a first step in the incorporation of negations is presented. Our aim is the treatment of the absence of properties (negative attributes). Specifically, we extend the framework by including specific tools for mining knowledge combining crisp positive and negative attributes.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Designing Software Architectures As a Composition of Specializations of Knowledge Domains

    Get PDF
    This paper summarizes our experimental research and software development activities in designing robust, adaptable and reusable software architectures. Several years ago, based on our previous experiences in object-oriented software development, we made the following assumption: ‘A software architecture should be a composition of specializations of knowledge domains’. To verify this assumption we carried out three pilot projects. In addition to the application of some popular domain analysis techniques such as use cases, we identified the invariant compositional structures of the software architectures and the related knowledge domains. Knowledge domains define the boundaries of the adaptability and reusability capabilities of software systems. Next, knowledge domains were mapped to object-oriented concepts. We experienced that some aspects of knowledge could not be directly modeled in terms of object-oriented concepts. In this paper we describe our approach, the pilot projects, the experienced problems and the adopted solutions for realizing the software architectures. We conclude the paper with the lessons that we learned from this experience

    Fuzzy inequational logic

    Full text link
    We present a logic for reasoning about graded inequalities which generalizes the ordinary inequational logic used in universal algebra. The logic deals with atomic predicate formulas of the form of inequalities between terms and formalizes their semantic entailment and provability in graded setting which allows to draw partially true conclusions from partially true assumptions. We follow the Pavelka approach and define general degrees of semantic entailment and provability using complete residuated lattices as structures of truth degrees. We prove the logic is Pavelka-style complete. Furthermore, we present a logic for reasoning about graded if-then rules which is obtained as particular case of the general result
    • …
    corecore