8,131 research outputs found

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Flow-based reputation: more than just ranking

    Full text link
    The last years have seen a growing interest in collaborative systems like electronic marketplaces and P2P file sharing systems where people are intended to interact with other people. Those systems, however, are subject to security and operational risks because of their open and distributed nature. Reputation systems provide a mechanism to reduce such risks by building trust relationships among entities and identifying malicious entities. A popular reputation model is the so called flow-based model. Most existing reputation systems based on such a model provide only a ranking, without absolute reputation values; this makes it difficult to determine whether entities are actually trustworthy or untrustworthy. In addition, those systems ignore a significant part of the available information; as a consequence, reputation values may not be accurate. In this paper, we present a flow-based reputation metric that gives absolute values instead of merely a ranking. Our metric makes use of all the available information. We study, both analytically and numerically, the properties of the proposed metric and the effect of attacks on reputation values

    Repage: REPutation and ImAGE Among Limited Autonomous Partners

    Get PDF
    This paper introduces Repage, a computational system that adopts a cognitive theory of reputation. We propose a fundamental difference between image and reputation, which suggests a way out from the paradox of sociality, i.e. the trade-off between agents' autonomy and their need to adapt to social environment. On one hand, agents are autonomous if they select partners based on their social evaluations (images). On the other, they need to update evaluations by taking into account others'. Hence, social evaluations must circulate and be represented as "reported evaluations" (reputation), before and in order for agents to decide whether to accept them or not. To represent this level of cognitive detail in artificial agents' design, there is a need for a specialised subsystem, which we are in the course of developing for the public domain. In the paper, after a short presentation of the cognitive theory of reputation and its motivations, we describe the implementation of Repage.Reputation, Agent Systems, Cognitive Design, Fuzzy Evaluation

    From Manifesta to Krypta: The Relevance of Categories for Trusting Others

    No full text
    In this paper we consider the special abilities needed by agents for assessing trust based on inference and reasoning. We analyze the case in which it is possible to infer trust towards unknown counterparts by reasoning on abstract classes or categories of agents shaped in a concrete application domain. We present a scenario of interacting agents providing a computational model implementing different strategies to assess trust. Assuming a medical domain, categories, including both competencies and dispositions of possible trustees, are exploited to infer trust towards possibly unknown counterparts. The proposed approach for the cognitive assessment of trust relies on agents' abilities to analyze heterogeneous information sources along different dimensions. Trust is inferred based on specific observable properties (Manifesta), namely explicitly readable signals indicating internal features (Krypta) regulating agents' behavior and effectiveness on specific tasks. Simulative experiments evaluate the performance of trusting agents adopting different strategies to delegate tasks to possibly unknown trustees, while experimental results show the relevance of this kind of cognitive ability in the case of open Multi Agent Systems

    Trust-Networks in Recommender Systems

    Get PDF
    Similarity-based recommender systems suffer from significant limitations, such as data sparseness and scalability. The goal of this research is to improve recommender systems by incorporating the social concepts of trust and reputation. By introducing a trust model we can improve the quality and accuracy of the recommended items. Three trust-based recommendation strategies are presented and evaluated against the popular MovieLens [8] dataset

    Reasoning with Categories for Trusting Strangers: a Cognitive Architecture

    No full text
    A crucial issue for agents in open systems is the ability to filter out information sources in order to build an image of their counterparts, upon which a subjective evaluation of trust as a promoter of interactions can be assessed. While typical solutions discern relevant information sources by relying on previous experiences or reputational images, this work presents an alternative approach based on the cognitive ability to: (i) analyze heterogeneous information sources along different dimensions; (ii) ascribe qualities to unknown counterparts based on reasoning over abstract classes or categories; and, (iii) learn a series of emergent relationships between particular properties observable on other agents and their effective abilities to fulfill tasks. A computational architecture is presented allowing cognitive agents to dynamically assess trust based on a limited set of observable properties, namely explicitly readable signals (Manifesta) through which it is possible to infer hidden properties and capabilities (Krypta), which finally regulate agents' behavior in concrete work environments. Experimental evaluation discusses the effectiveness of trustor agents adopting different strategies to delegate tasks based on categorization
    • …
    corecore