14,362 research outputs found

    A methodology for the selection of new technologies in the aviation industry

    Get PDF
    The purpose of this report is to present a technology selection methodology to quantify both tangible and intangible benefits of certain technology alternatives within a fuzzy environment. Specifically, it describes an application of the theory of fuzzy sets to hierarchical structural analysis and economic evaluations for utilisation in the industry. The report proposes a complete methodology to accurately select new technologies. A computer based prototype model has been developed to handle the more complex fuzzy calculations. Decision-makers are only required to express their opinions on comparative importance of various factors in linguistic terms rather than exact numerical values. These linguistic variable scales, such as ‘very high’, ‘high’, ‘medium’, ‘low’ and ‘very low’, are then converted into fuzzy numbers, since it becomes more meaningful to quantify a subjective measurement into a range rather than in an exact value. By aggregating the hierarchy, the preferential weight of each alternative technology is found, which is called fuzzy appropriate index. The fuzzy appropriate indices of different technologies are then ranked and preferential ranking orders of technologies are found. From the economic evaluation perspective, a fuzzy cash flow analysis is employed. This deals quantitatively with imprecision or uncertainties, as the cash flows are modelled as triangular fuzzy numbers which represent ‘the most likely possible value’, ‘the most pessimistic value’ and ‘the most optimistic value’. By using this methodology, the ambiguities involved in the assessment data can be effectively represented and processed to assure a more convincing and effective decision- making process when selecting new technologies in which to invest. The prototype model was validated with a case study within the aviation industry that ensured it was properly configured to meet the

    Risk-based methods for sustainable energy system planning: a review

    Get PDF
    The value of investments in renewable energy (RE) technologies has increased rapidly over the last decade as a result of political pressures to reduce carbon dioxide emissions and the policy incentives to increase the share of RE in the energy mix. As the number of RE investments increases, so does the need to measure the associated risks throughout planning, constructing and operating these technologies. This paper provides a state-of-the-art literature review of the quantitative and semi-quantitative methods that have been used to model risks and uncertainties in sustainable energy system planning and feasibility studies, including the derivation of optimal energy technology portfolios. The review finds that in quantitative methods, risks are mainly measured by means of the variance or probability density distributions of technical and economical parameters; while semi-quantitative methods such as scenario analysis and multi-criteria decision analysis (MCDA) can also address non-statistical parameters such as socio-economic factors (e.g. macro-economic trends, lack of public acceptance). Finally, untapped issues recognised in recent research approaches are discussed along with suggestions for future research

    Flexible Transmission Network Planning Considering the Impacts of Distributed Generation

    Get PDF
    The restructuring of global power industries has introduced a number of challenges, such as conflicting planning objectives and increasing uncertainties,to transmission network planners. During the recent past, a number of distributed generation technologies also reached a stage allowing large scale implementation, which will profoundly influence the power industry, as well as the practice of transmission network expansion. In the new market environment, new approaches are needed to meet the above challenges. In this paper, a market simulation based method is employed to assess the economical attractiveness of different generation technologies, based on which future scenarios of generation expansion can be formed. A multi-objective optimization model for transmission expansion planning is then presented. A novel approach is proposed to select transmission expansion plans that are flexible given the uncertainties of generation expansion, system load and other market variables. Comprehensive case studies will be conducted to investigate the performance of our approach. In addition, the proposed method will be employed to study the impacts of distributed generation, especially on transmission expansion planning.

    NEW ASPECTS REGARDING THE EVALUATION OF INVESTMENTS IN CRITICAL INFRASTRUCTURE

    Get PDF
    The additional risks associated to the actual global and contagious crisis put a severe pressure on the investments in critical infrastructure and there is a real need for new valuations especially those regarding the synergic financing strategies in critsynergic investments, critical infrastructure, real options valuation (ROV)

    Economic and regulatory uncertainty in renewable energy system design: a review

    Get PDF
    Renewable energy is increasingly mobilizing more investment around the globe. However, there has been little attention to evaluating economic and regulatory (E&R) uncertainties, despite their enormous impact on the project cashflows. Consequently, this review analyzes, classifies, and discusses 130 articles dealing with the design of renewable energy projects under E&R uncertainties. After performing a survey and identifying the selected manuscripts, and the few previous reviews on the matter, the following innovative categorization is designed: sources of uncertainty, uncertainty characterization methods, problem formulations, solution methods, and regulatory frameworks. The classification reveals that electricity price is the most considered source of uncertainty, often alone, despite the existence of six other equally influential groups of E&R uncertainties. In addition, real options and optimization arise as the two main approaches researchers use to solve problems in energy system design. Subsequently, the following aspects of interest are discussed in depth: how modeling can be improved, which are the most influential variables, and potential lines of research. Conclusions show the necessity of modeling E&R uncertainties with currently underrepresented methods, suggest several policy recommendations, and encourage the integration of prevailing approaches.Peer ReviewedObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.2 - Per a 2030, augmentar substancialment el percentatge d’energia renovable en el con­junt de fonts d’energiaObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantPostprint (published version

    Risks of investment in personnel development: evidence from Ukrainian IT companies

    Get PDF
    In this paper, we examine key factors that influence the risks of investment in the development of human capital of a firm in the IT sector and estimate their weight in the overall risk. In particular, we single out the risk of premature voluntary termination of an employee, the risk of ineffective training, and the risk of a firm’s incorrect employee development strategy. Moreover, to support management of the mentioned kinds of risks, we enumerate the factors that influence them and classify those factors into three main groups: related to the employee, related to the firm, and related to the external environment. Based on this division, we build a model for estimating the risks of investing in the development of personnel using the Analytic Hierarchy Process (AHP)

    A framework for the selection of the right nuclear power plant

    Get PDF
    Civil nuclear reactors are used for the production of electrical energy. In the nuclear industry vendors propose several nuclear reactor designs with a size from 35–45 MWe up to 1600–1700 MWe. The choice of the right design is a multidimensional problem since a utility has to include not only financial factors as levelised cost of electricity (LCOE) and internal rate of return (IRR), but also the so called “external factors” like the required spinning reserve, the impact on local industry and the social acceptability. Therefore it is necessary to balance advantages and disadvantages of each design during the entire life cycle of the plant, usually 40–60 years. In the scientific literature there are several techniques for solving this multidimensional problem. Unfortunately it does not seem possible to apply these methodologies as they are, since the problem is too complex and it is difficult to provide consistent and trustworthy expert judgments. This paper fills the gap, proposing a two-step framework to choosing the best nuclear reactor at the pre-feasibility study phase. The paper shows in detail how to use the methodology, comparing the choice of a small-medium reactor (SMR) with a large reactor (LR), characterised, according to the International Atomic Energy Agency (2006), by an electrical output respectively lower and higher than 700 MWe

    The use of real options approach in energy sector investments

    Get PDF
    Energy shortage, global warming, and climate change led to an increase in the use of alternative sources of energy, with renewable energy sources (RES) playing a fundamental role in this new energetic paradigm. However, the investment costs often constitute a major barrier to their spread use. Moreover, the overall benefits of renewable energy technologies are often not well understood and consequently they are often evaluated to be not as cost effective as traditional technologies. From the moment that the energy sector started a deregulation process, with a high level of competitiveness and associated increased market uncertainty, traditional project evaluation techniques alone became insufficient to properly deal with these additional risk and uncertainty factors. The diffusion of the renewable energy technologies is also affected by this feature. The way investors evaluate their investments call now for the use of more sophisticated evaluation techniques. Real options approach can deal with these issues and, as so, began to be considered and applied for the energy sector decision aid. This approach it is now extensively widespread in evaluating investment projects in the energy sector. A large set of applications in almost all fields of energy decision making, from electricity generation technologies appraisal to policy evaluation is available in the literature. However the use of this technique in the field of RES is still limited and worth to be analysed. This paper addresses this issue. A review of the current state of the art in the application of real options approach to investments in non-renewable energy sources and RES is presented, giving perspectives for further research in this field.This work was financed by: the QREN – Operational Programme for Competitiveness Factors, the European Union – European Regional Development Fund and National Funds- Portuguese Foundation for Science and Technology, under Project FCOMP-01-0124-FEDER-011377 and Project Pest-OE/EME/UI0252/201

    Traveller Behaviour: Decision making in an unpredictable world

    Get PDF
    This paper discusses the nature and consequences of uncertainty in transport systems. Drawing on work from a number of fields, it addresses travellers’ abilities to predict variable phenomena, their perception of uncertainty, their attitude to risk and the various strategies they might adopt in response to uncertainty. It is argued that despite the increased interest in the representation of uncertainty in transport systems, most models treat uncertainty as a purely statistical issue and ignore the psychological aspects of response to uncertainty. The principle theories and models currently used to predict travellers’ response to uncertainty are presented and number of alternative modelling approaches are outlined. It is argued that the current generation of predictive models do not provide an adequate basis for forecasting response to changes in the degree of uncertainty or for predicting the likely effect of providing additional information. A number of alternative modelling approaches are identified to deal with travellers’ acquisition of information, the definition of their choice set and their choice between the available options. The use of heuristic approaches is recommended as an alternative to more conventional probabilistic methods
    • 

    corecore