7 research outputs found

    An optimized fuzzy logic model for proactive maintenance

    Full text link
    Fuzzy logic has been proposed in previous studies for machine diagnosis, to overcome different drawbacks of the traditional diagnostic approaches used. Among these approaches Failure Mode and Effect Critical Analysis method(FMECA) attempts to identify potential modes and treat failures before they occur based on subjective expert judgments. Although several versions of fuzzy logic are used to improve FMECA or to replace it, since it is an extremely cost-intensive approach in terms of failure modes because it evaluates each one of them separately, these propositions have not explicitly focused on the combinatorial complexity nor justified the choice of membership functions in Fuzzy logic modeling. Within this context, we develop an optimization-based approach referred to Integrated Truth Table and Fuzzy Logic Model (ITTFLM) that smartly generates fuzzy logic rules using Truth Tables. The ITTFLM was tested on fan data collected in real-time from a plant machine. In the experiment, three types of membership functions (Triangular, Trapezoidal, and Gaussian) were used. The ITTFLM can generate outputs in 5ms, the results demonstrate that this model based on the Trapezoidal membership functions identifies the failure states with high accuracy, and its capability of dealing with large numbers of rules and thus meets the real-time constraints that usually impact user experience.Comment: 16 pages in single column format, 11 figures, 12th International Conference on Artificial Intelligence, Soft Computing and Applications (AIAA 2022) December 22 ~ 24, 2022, Sydney, Australi

    Weather related fault prediction in minimally monitored distribution networks

    Get PDF
    Power distribution networks are increasingly challenged by ageing plant, environmental extremes and previously unforeseen operational factors. The combination of high loading and weather conditions is responsible for large numbers of recurring faults in legacy plants which have an impact on service quality. Owing to their scale and dispersed nature, it is prohibitively expensive to intensively monitor distribution networks to capture the electrical context these disruptions occur in, making it difficult to forestall recurring faults. In this paper, localised weather data are shown to support fault prediction on distribution networks. Operational data are temporally aligned with meteorological observations to identify recurring fault causes with the potentially complex relation between them learned from historical fault records. Five years of data from a UK Distribution Network Operator is used to demonstrate the approach at both HV and LV distribution network levels with results showing the ability to predict the occurrence of a weather related fault at a given substation considering only meteorological observations. Unifying a diverse range of previously identified fault relations in a single ensemble model and accompanying the predicted network conditions with an uncertainty measure would allow a network operator to manage their network more effectively in the long term and take evasive action for imminent events over shorter timescales

    Microgrid Formation-based Service Restoration Using Deep Reinforcement Learning and Optimal Switch Placement in Distribution Networks

    Get PDF
    A power distribution network that demonstrates resilience has the ability to minimize the duration and severity of power outages, ensure uninterrupted service delivery, and enhance overall reliability. Resilience in this context refers to the network's capacity to withstand and quickly recover from disruptive events, such as equipment failures, natural disasters, or cyber attacks. By effectively mitigating the effects of such incidents, a resilient power distribution network can contribute to enhanced operational performance, customer satisfaction, and economic productivity. The implementation of microgrids as a response to power outages constitutes a viable approach for enhancing the resilience of the system. In this work, a novel method for service restoration based on dynamic microgrid formation and deep reinforcement learning is proposed. To this end, microgrid formation-based service restoration is formulated as a Markov decision process. Then, by utilizing the node cell and route model concept, every distributed generation unit equipped with the black-start capability traverses the power system, thereby restoring power to the lines and nodes it visits. The deep Q-network is employed as a means to achieve optimal policy control, which guides agents in the selection of node cells that result in maximum load pick-up while adhering to operational constraints. In the next step, a solution has been proposed for the switch placement problem in distribution networks, which results in a substantial improvement in service restoration. Accordingly, an effective algorithm, utilizing binary particle swarm optimization, is employed to optimize the placement of switches in distribution networks. The input data necessary for the proposed algorithm comprises information related to the power system topology and load point data. The fitness of the solution is assessed by minimizing the unsupplied loads and the number of switches placed in distribution networks. The proposed methods are validated using a large-scale unbalanced distribution system consisting of 404 nodes, which is operated by Saskatoon Light and Power, a local utility in Saskatoon, Canada. Additionally, a balanced IEEE 33-node test system is also utilized for validation purposes

    Fuzzy Logic Approach to Predictive Risk Analysis in Distribution Outage Management

    No full text
    corecore