4,598 research outputs found

    Higher-dimensional models of networks

    Full text link
    Networks are often studied as graphs, where the vertices stand for entities in the world and the edges stand for connections between them. While relatively easy to study, graphs are often inadequate for modeling real-world situations, especially those that include contexts of more than two entities. For these situations, one typically uses hypergraphs or simplicial complexes. In this paper, we provide a precise framework in which graphs, hypergraphs, simplicial complexes, and many other categories, all of which model higher graphs, can be studied side-by-side. We show how to transform a hypergraph into its nearest simplicial analogue, for example. Our framework includes many new categories as well, such as one that models broadcasting networks. We give several examples and applications of these ideas

    Hyperbolic Supersymmetric Quantum Hall Effect

    Full text link
    Developing a non-compact version of the SUSY Hopf map, we formulate the quantum Hall effect on a super-hyperboloid. Based on OSp(12)OSp(1|2) group theoretical methods, we first analyze the one-particle Landau problem, and successively explore the many-body problem where Laughlin wavefunction, hard-core pseudo-potential Hamiltonian and topological excitations are derived. It is also shown that the fuzzy super-hyperboloid emerges in the lowest Landau level.Comment: 14 pages, two columns, no figures, published version, typos correcte

    Dirac operator on the q-deformed Fuzzy sphere and Its spectrum

    Full text link
    The q-deformed fuzzy sphere SqF2(N)S_{qF}^2(N) is the algebra of (N+1)×(N+1)(N+1)\times(N+1) dim. matrices, covariant with respect to the adjoint action of \uq and in the limit q1q\to 1, it reduces to the fuzzy sphere SF2(N)S_{F}^2(N). We construct the Dirac operator on the q-deformed fuzzy sphere-SqF2(N)S_{qF}^{2}(N) using the spinor modules of \uq. We explicitly obtain the zero modes and also calculate the spectrum for this Dirac operator. Using this Dirac operator, we construct the \uq invariant action for the spinor fields on SqF2(N)S_{qF}^{2}(N) which are regularised and have only finite modes. We analyse the spectrum for both qq being root of unity and real, showing interesting features like its novel degeneracy. We also study various limits of the parameter space (q, N) and recover the known spectrum in both fuzzy and commutative sphere.Comment: 19 pages, 6 figures, more references adde

    Non-commutative Complex Projective Spaces and the Standard Model

    Get PDF
    The standard model fermion spectrum, including a right handed neutrino, can be obtained as a zero-mode of the Dirac operator on a space which is the product of complex projective spaces of complex dimension two and three. The construction requires the introduction of topologically non-trivial background gauge fields. By borrowing from ideas in Connes' non-commutative geometry and making the complex spaces `fuzzy' a matrix approximation to the fuzzy space allows for three generations to emerge. The generations are associated with three copies of space-time. Higgs' fields and Yukawa couplings can be accommodated in the usual way.Comment: Contribution to conference in honour of A.P. Balachandran's 65th birthday: "Space-time and Fundamental Interactions: Quantum Aspects", Vietri sul Mare, Italy, 25th-31st May, 2003, 10 pages, typset in LaTe

    Deformed matrix models, supersymmetric lattice twists and N=1/4 supersymmetry

    Get PDF
    A manifestly supersymmetric nonperturbative matrix regularization for a twisted version of N=(8,8) theory on a curved background (a two-sphere) is constructed. Both continuum and the matrix regularization respect four exact scalar supersymmetries under a twisted version of the supersymmetry algebra. We then discuss a succinct Q=1 deformed matrix model regularization of N=4 SYM in d=4, which is equivalent to a non-commutative A4A_4^* orbifold lattice formulation. Motivated by recent progress in supersymmetric lattices, we also propose a N=1/4 supersymmetry preserving deformation of N=4 SYM theory on R4\R^4. In this class of N=1/4 theories, both the regularized and continuum theory respect the same set of (scalar) supersymmetry. By using the equivalence of the deformed matrix models with the lattice formulations, we give a very simple physical argument on why the exact lattice supersymmetry must be a subset of scalar subalgebra. This argument disagrees with the recent claims of the link approach, for which we give a new interpretation.Comment: 47 pages, 3 figure

    An Overview of Topological and Fuzzy Topological Hypergroupoids

    Get PDF
    On a hypergroup, one can define a topology such that the hyperoperation is pseudocontinuous or continuous.This concepts can be extend to the fuzzy case and a connection between the classical and the fuzzy (pseudo)continuous hyperoperations can be given.This paper, that is his an overview of results received by S. Hoskova-Mayerova with coauthors  I. Cristea , M. Tahere and  B. Davaz, gives examples of topological hypergroupoids and show that there is no relation (in general) between pseudotopological and strongly pseudotopological hypergroupoids. In particular, it shows a topological hypergroupoid that does not depend on the pseudocontinuity nor on strongly pseudocontinuity of the hyperoperation

    Full Issue

    Get PDF
    corecore