3 research outputs found

    Location of Facility Based on Simulated Annealing and “ZKW” Algorithms

    Get PDF
    To cope with the facility location problem, a method based on simulated annealing and “ZKW” algorithm is proposed in this article. The method is applied to some real cases, which aims to deploy video content server at appropriate nodes in an undirected graph to satisfy the requirements of the consumption nodes with the least cost. Simulated annealing can easily find the optimum with less reliance on the initial solution. “ZKW” algorithm can find the shortest path and calculate the least cost from the server node to consumption node quickly. The results of three kinds of cases illustrate the efficiency of our method, which can obtain the optimum within 90 s. A comparison with Dijkstra and Floyd algorithms shows that, by using “ZKW” algorithm, the method can have large iteration with limited time. Therefore, the proposed method is able to solve this video content server location problem

    Optimising the resilience of shipping networks to climate vulnerability

    Get PDF
    Climate extremes are threatening transportation infrastructures and hence require new methods to address their vulnerability and improve their resilience. However, existing studies have yet to examine the climate impacts on transportation networks systematically rather than independently assessing the infrastructures at a component level. Therefore, it is crucial to configure alternative shipping routes from a systematic perspective to reduce climate vulnerabilities and optimise the resilience of the whole shipping network. This paper aims to assess the global shipping network focusing on climate resilience by a methodology that combines climate risk indicators, centrality analysis and ship routing optimisation. The methodology is designed for overviewing the climate vulnerability of the current and future scenarios for comparison. First, a multi-centrality assessment defines the global shipping hubs and network vulnerabilities. Secondly, a shipping model is built for finding the optimal shipping route between ports, considering the port disruption days caused by climate change (e.g. extreme weather) based on the climate vulnerability analysis result from the first step. It contributes to a new framework combining the global and local seaport climate vulnerabilities. Furthermore, it recommends changing shipping routes by a foreseeable increase in port disruptions caused by extreme weather for climate adaptation
    corecore