137 research outputs found

    Task Assignment and Path Planning for Autonomous Mobile Robots in Stochastic Warehouse Systems

    Get PDF
    The material handling industry is in the middle of a transformation from manual operations to automation due to the rapid growth in e-commerce. Autonomous mobile robots (AMRs) are being widely implemented to replace manually operated forklifts in warehouse systems to fulfil large shipping demand, extend warehouse operating hours, and mitigate safety concerns. Two open questions in AMR management are task assignment and path planning. This dissertation addresses the task assignment and path planning (TAPP) problem for autonomous mobile robots (AMR) in a warehouse environment. The goals are to maximize system productivity by avoiding AMR traffic and reducing travel time. The first topic in this dissertation is the development of a discrete event simulation modeling framework that can be used to evaluate alternative traffic control rules, task assignment methods, and path planning algorithms. The second topic, Risk Interval Path Planning (RIPP), is an algorithm designed to avoid conflicts among AMRs considering uncertainties in robot motion. The third topic is a deep reinforcement learning (DRL) model that is developed to solve task assignment and path planning problems, simultaneously. Experimental results demonstrate the effectiveness of these methods in stochastic warehouse systems

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Goal-oriented Behaviour for Intelligent Game Agents

    Get PDF
    This thesis concerns our innovation in game AI techniques, mainly game agents' modeling, planning and learning. The research topic involves the development of a game design software --- Gameme. Our work mainly focus on the development of the core AI module. In this thesis, after discussing the system design of Gameme, we explain our contributions in two parts: off-line design and real-time processing. In off-line design, we present goal-oriented behaviour design and related modeling methodology for game agents. The goal-oriented design provides not only an intuitive behaviour design methodology for non-professional game designers but also efficient support for real-time behaviour control. In particular, the goal-oriented design can be used in modeling agents in different games. The real-time processing component includes planning and learning mechanisms for game agents. These mechanisms are placed in a layered architecture. Basically, a procedural planning mechanism allows game agents to have the ability of fast reaction to their environment. Then, the creative transfer and adaptive learning mechanism trains game agents to learn from their experience and cooperate in teamwork. Furthermore, the unique emergent learning mechanism can allow game agents to have the ability to analyze different PCs' behaviour patterns and to find the suitable strategy to defeat PCs in real-time. Most of the experiments in this thesis are performed in fighting scenarios. We connected the core AI module with a 3D graphics engine in order to have visual testing results. All test cases show that our goal-oriented behaviour design along with planning and learning mechanisms can provide fast, autonomous, collaborative and adaptive behaviour instructions for game agent in real-time game play

    BNAIC 2008:Proceedings of BNAIC 2008, the twentieth Belgian-Dutch Artificial Intelligence Conference

    Get PDF

    Artificial general intelligence: Proceedings of the Second Conference on Artificial General Intelligence, AGI 2009, Arlington, Virginia, USA, March 6-9, 2009

    Get PDF
    Artificial General Intelligence (AGI) research focuses on the original and ultimate goal of AI – to create broad human-like and transhuman intelligence, by exploring all available paths, including theoretical and experimental computer science, cognitive science, neuroscience, and innovative interdisciplinary methodologies. Due to the difficulty of this task, for the last few decades the majority of AI researchers have focused on what has been called narrow AI – the production of AI systems displaying intelligence regarding specific, highly constrained tasks. In recent years, however, more and more researchers have recognized the necessity – and feasibility – of returning to the original goals of the field. Increasingly, there is a call for a transition back to confronting the more difficult issues of human level intelligence and more broadly artificial general intelligence

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    How does rumination impact cognition? A first mechanistic model.

    Get PDF

    How does rumination impact cognition? A first mechanistic model.

    Get PDF
    Rumination is a process of uncontrolled, narrowly-foused neg- ative thinking that is often self-referential, and that is a hall- mark of depression. Despite its importance, little is known about its cognitive mechanisms. Rumination can be thought of as a specific, constrained form of mind-wandering. Here, we introduce a cognitive model of rumination that we devel- oped on the basis of our existing model of mind-wandering. The rumination model implements the hypothesis that rumina- tion is caused by maladaptive habits of thought. These habits of thought are modelled by adjusting the number of memory chunks and their associative structure, which changes the se- quence of memories that are retrieved during mind-wandering, such that during rumination the same set of negative memo- ries is retrieved repeatedly. The implementation of habits of thought was guided by empirical data from an experience sam- pling study in healthy and depressed participants. On the ba- sis of this empirically-derived memory structure, our model naturally predicts the declines in cognitive task performance that are typically observed in depressed patients. This study demonstrates how we can use cognitive models to better un- derstand the cognitive mechanisms underlying rumination and depression
    • …
    corecore