187 research outputs found

    A Dense Medial Descriptor for Image Analysis

    Get PDF

    A Dense Medial Descriptor for Image Analysis

    Get PDF

    A Dense Medial Descriptor for Image Analysis

    Get PDF

    Skeletonization and segmentation of binary voxel shapes

    Get PDF
    Preface. This dissertation is the result of research that I conducted between January 2005 and December 2008 in the Visualization research group of the Technische Universiteit Eindhoven. I am pleased to have the opportunity to thank a number of people that made this work possible. I owe my sincere gratitude to Alexandru Telea, my supervisor and first promotor. I did not consider pursuing a PhD until my Master’s project, which he also supervised. Due to our pleasant collaboration from which I learned quite a lot, I became convinced that becoming a doctoral student would be the right thing to do for me. Indeed, I can say it has greatly increased my knowledge and professional skills. Alex, thank you for our interesting discussions and the freedom you gave me in conducting my research. You made these four years a pleasant experience. I am further grateful to Jack vanWijk, my second promotor. Our monthly discussions were insightful, and he continuously encouraged me to take a more formal and scientific stance. I would also like to thank Prof. Jan de Graaf from the department of mathematics for our discussions on some of my conjectures. His mathematical rigor was inspiring. I am greatly indebted to the Netherlands Organisation for Scientific Research (NWO) for funding my PhD project (grant number 612.065.414). I thank Prof. Kaleem Siddiqi, Prof. Mark de Berg, and Dr. Remco Veltkamp for taking part in the core doctoral committee and Prof. Deborah Silver and Prof. Jos Roerdink for participating in the extended committee. Our Visualization group provides a great atmosphere to do research in. In particular, I would like to thank my fellow doctoral students Frank van Ham, Hannes Pretorius, Lucian Voinea, Danny Holten, Koray Duhbaci, Yedendra Shrinivasan, Jing Li, NielsWillems, and Romain Bourqui. They enabled me to take my mind of research from time to time, by discussing political and economical affairs, and more trivial topics. Furthermore, I would like to thank the senior researchers of our group, Huub van de Wetering, Kees Huizing, and Michel Westenberg. In particular, I thank Andrei Jalba for our fruitful collaboration in the last part of my work. On a personal level, I would like to thank my parents and sister for their love and support over the years, my friends for providing distractions outside of the office, and Michelle for her unconditional love and ability to light up my mood when needed

    Spline-based dense medial descriptors for lossy image compression

    Get PDF
    Medial descriptors are of significant interest for image simplification, representation, manipulation, and compression. On the other hand, B-splines are well-known tools for specifying smooth curves in computer graphics and geometric design. In this paper, we integrate the two by modeling medial descriptors with stable and accurate B-splines for image compression. Representing medial descriptors with B-splines can not only greatly improve compression but is also an effective vector representation of raster images. A comprehensive evaluation shows that our Spline-based Dense Medial Descriptors (SDMD) method achieves much higher compression ratios at similar or even better quality to the well-known JPEG technique. We illustrate our approach with applications in generating super-resolution images and salient feature preserving image compression

    Skeletonization of sparse shapes using dynamic competitive neural networks

    Get PDF
    La detección de regiones y objetos en imágenes digitales es un tema de suma importancia en la resolución de numerosos problemas correspondientes al área de reconocimiento de patrones. En esta dirección los algoritmos de esqueletización son una herramienta muy utilizada ya que permiten reducir la cantidad de información disponible facilitando la extracción de características para su posterior reconocimiento y clasificación. Además, esta transformación de la información original en sus características esenciales, facilita la eliminación de ruidos locales presentes en la entrada de datos. Este artículo propone una nueva estrategia de esqueletización aplicable a imágenes esparcidas a partir de una red neuronal competitiva dinámica entrenada con el método AVGSOM. La estrategia desarrollada en este trabajo determina los arcos que forman el esqueleto combinando el aprendizaje no supervisado del AVGSOM con un árbol de dispersión mínima (minimun spaning tree). El método propuesto ha sido aplicado en imágenes con diferente forma y grado de dispersión. En particular, los resultados obtenidos han sido comparados con soluciones existentes mostrando resultados satisfactorios. Finalmente se presentan algunas conclusiones así como algunas líneas de trabajo futurasThe detection of regions and objects in digital images is a topic of utmost importance for solving several problems related to the area of pattern recognition. In this direction, skeletonization algorithms are a widely used tool since they allow us to reduce the quantity of available data, easing the detection of characteristics for their recognition and classification. In addition, this transformation of the original data in its essential characteristics eases the elimination of local noise which is present in the data input. This paper proposes a new skeletonization strategy applicable to sparse images from a competitive, dynamic neural network trained with the AVGSOM method. The strategy developed in this paper determines the arc making up the skeleton combining AVGSOM non-supervised learning with a minimum spanning tree. The proposed method has been applied in images with different spanning shape and degree. In particular, the results obtained have been compared to existing solutions, showing successful results. Finally, some conclusions, together with some future lines of work, are presented.VII Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    Part-type Segmentation of Articulated Voxel-Shapes using the Junction Rule

    Get PDF

    Part-type Segmentation of Articulated Voxel-Shapes using the Junction Rule

    Get PDF

    Skeletonization methods for image and volume inpainting

    Get PDF

    Skeletonization methods for image and volume inpainting

    Get PDF
    • …
    corecore