8,867 research outputs found

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160

    Fast Low-rank Representation based Spatial Pyramid Matching for Image Classification

    Full text link
    Spatial Pyramid Matching (SPM) and its variants have achieved a lot of success in image classification. The main difference among them is their encoding schemes. For example, ScSPM incorporates Sparse Code (SC) instead of Vector Quantization (VQ) into the framework of SPM. Although the methods achieve a higher recognition rate than the traditional SPM, they consume more time to encode the local descriptors extracted from the image. In this paper, we propose using Low Rank Representation (LRR) to encode the descriptors under the framework of SPM. Different from SC, LRR considers the group effect among data points instead of sparsity. Benefiting from this property, the proposed method (i.e., LrrSPM) can offer a better performance. To further improve the generalizability and robustness, we reformulate the rank-minimization problem as a truncated projection problem. Extensive experimental studies show that LrrSPM is more efficient than its counterparts (e.g., ScSPM) while achieving competitive recognition rates on nine image data sets.Comment: accepted into knowledge based systems, 201

    Image Parsing with a Wide Range of Classes and Scene-Level Context

    Full text link
    This paper presents a nonparametric scene parsing approach that improves the overall accuracy, as well as the coverage of foreground classes in scene images. We first improve the label likelihood estimates at superpixels by merging likelihood scores from different probabilistic classifiers. This boosts the classification performance and enriches the representation of less-represented classes. Our second contribution consists of incorporating semantic context in the parsing process through global label costs. Our method does not rely on image retrieval sets but rather assigns a global likelihood estimate to each label, which is plugged into the overall energy function. We evaluate our system on two large-scale datasets, SIFTflow and LMSun. We achieve state-of-the-art performance on the SIFTflow dataset and near-record results on LMSun.Comment: Published at CVPR 2015, Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference o

    Face recognition using multiple features in different color spaces

    Get PDF
    Face recognition as a particular problem of pattern recognition has been attracting substantial attention from researchers in computer vision, pattern recognition, and machine learning. The recent Face Recognition Grand Challenge (FRGC) program reveals that uncontrolled illumination conditions pose grand challenges to face recognition performance. Most of the existing face recognition methods use gray-scale face images, which have been shown insufficient to tackle these challenges. To overcome this challenging problem in face recognition, this dissertation applies multiple features derived from the color images instead of the intensity images only. First, this dissertation presents two face recognition methods, which operate in different color spaces, using frequency features by means of Discrete Fourier Transform (DFT) and spatial features by means of Local Binary Patterns (LBP), respectively. The DFT frequency domain consists of the real part, the imaginary part, the magnitude, and the phase components, which provide the different interpretations of the input face images. The advantage of LBP in face recognition is attributed to its robustness in terms of intensity-level monotonic transformation, as well as its operation in the various scale image spaces. By fusing the frequency components or the multi-resolution LBP histograms, the complementary feature sets can be generated to enhance the capability of facial texture description. This dissertation thus uses the fused DFT and LBP features in two hybrid color spaces, the RIQ and the VIQ color spaces, respectively, for improving face recognition performance. Second, a method that extracts multiple features in the CID color space is presented for face recognition. As different color component images in the CID color space display different characteristics, three different image encoding methods, namely, the patch-based Gabor image representation, the multi-resolution LBP feature fusion, and the DCT-based multiple face encodings, are presented to effectively extract features from the component images for enhancing pattern recognition performance. To further improve classification performance, the similarity scores due to the three color component images are fused for the final decision making. Finally, a novel image representation is also discussed in this dissertation. Unlike a traditional intensity image that is directly derived from a linear combination of the R, G, and B color components, the novel image representation adapted to class separability is generated through a PCA plus FLD learning framework from the hybrid color space instead of the RGB color space. Based upon the novel image representation, a multiple feature fusion method is proposed to address the problem of face recognition under the severe illumination conditions. The aforementioned methods have been evaluated using two large-scale databases, namely, the Face Recognition Grand Challenge (FRGC) version 2 database and the FERET face database. Experimental results have shown that the proposed methods improve face recognition performance upon the traditional methods using the intensity images by large margins and outperform some state-of-the-art methods

    Biometric Authentication System on Mobile Personal Devices

    Get PDF
    We propose a secure, robust, and low-cost biometric authentication system on the mobile personal device for the personal network. The system consists of the following five key modules: 1) face detection; 2) face registration; 3) illumination normalization; 4) face verification; and 5) information fusion. For the complicated face authentication task on the devices with limited resources, the emphasis is largely on the reliability and applicability of the system. Both theoretical and practical considerations are taken. The final system is able to achieve an equal error rate of 2% under challenging testing protocols. The low hardware and software cost makes the system well adaptable to a large range of security applications
    corecore