21 research outputs found

    Fused sparsity and robust estimation for linear models with unknown variance

    Get PDF
    International audienceIn this paper, we develop a novel approach to the problem of learning sparse representations in the context of fused sparsity and unknown noise level. We propose an algorithm, termed Scaled Fused Dantzig Selector (SFDS), that accomplishes the aforementioned learning task by means of a second-order cone program. A special emphasize is put on the particular instance of fused sparsity corresponding to the learning in presence of outliers. We establish finite sample risk bounds and carry out an experimental evaluation on both synthetic and real data

    Confidence regions and minimax rates in outlier-robust estimation on the probability simplex

    Full text link
    We consider the problem of estimating the mean of a distribution supported by the kk-dimensional probability simplex in the setting where an ε\varepsilon fraction of observations are subject to adversarial corruption. A simple particular example is the problem of estimating the distribution of a discrete random variable. Assuming that the discrete variable takes kk values, the unknown parameter θ\boldsymbol \theta is a kk-dimensional vector belonging to the probability simplex. We first describe various settings of contamination and discuss the relation between these settings. We then establish minimax rates when the quality of estimation is measured by the total-variation distance, the Hellinger distance, or the L2\mathbb L^2-distance between two probability measures. We also provide confidence regions for the unknown mean that shrink at the minimax rate. Our analysis reveals that the minimax rates associated to these three distances are all different, but they are all attained by the sample average. Furthermore, we show that the latter is adaptive to the possible sparsity of the unknown vector. Some numerical experiments illustrating our theoretical findings are reported

    Pivotal estimation via square-root Lasso in nonparametric regression

    Get PDF
    We propose a self-tuning Lasso\sqrt{\mathrm {Lasso}} method that simultaneously resolves three important practical problems in high-dimensional regression analysis, namely it handles the unknown scale, heteroscedasticity and (drastic) non-Gaussianity of the noise. In addition, our analysis allows for badly behaved designs, for example, perfectly collinear regressors, and generates sharp bounds even in extreme cases, such as the infinite variance case and the noiseless case, in contrast to Lasso. We establish various nonasymptotic bounds for Lasso\sqrt{\mathrm {Lasso}} including prediction norm rate and sparsity. Our analysis is based on new impact factors that are tailored for bounding prediction norm. In order to cover heteroscedastic non-Gaussian noise, we rely on moderate deviation theory for self-normalized sums to achieve Gaussian-like results under weak conditions. Moreover, we derive bounds on the performance of ordinary least square (ols) applied to the model selected by Lasso\sqrt{\mathrm {Lasso}} accounting for possible misspecification of the selected model. Under mild conditions, the rate of convergence of ols post Lasso\sqrt{\mathrm {Lasso}} is as good as Lasso\sqrt{\mathrm {Lasso}}'s rate. As an application, we consider the use of Lasso\sqrt{\mathrm {Lasso}} and ols post Lasso\sqrt{\mathrm {Lasso}} as estimators of nuisance parameters in a generic semiparametric problem (nonlinear moment condition or ZZ-problem), resulting in a construction of n\sqrt{n}-consistent and asymptotically normal estimators of the main parameters.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1204 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On estimation of the diagonal elements of a sparse precision matrix

    Full text link
    In this paper, we present several estimators of the diagonal elements of the inverse of the covariance matrix, called precision matrix, of a sample of iid random vectors. The focus is on high dimensional vectors having a sparse precision matrix. It is now well understood that when the underlying distribution is Gaussian, the columns of the precision matrix can be estimated independently form one another by solving linear regression problems under sparsity constraints. This approach leads to a computationally efficient strategy for estimating the precision matrix that starts by estimating the regression vectors, then estimates the diagonal entries of the precision matrix and, in a final step, combines these estimators for getting estimators of the off-diagonal entries. While the step of estimating the regression vector has been intensively studied over the past decade, the problem of deriving statistically accurate estimators of the diagonal entries has received much less attention. The goal of the present paper is to fill this gap by presenting four estimators---that seem the most natural ones---of the diagonal entries of the precision matrix and then performing a comprehensive empirical evaluation of these estimators. The estimators under consideration are the residual variance, the relaxed maximum likelihood, the symmetry-enforced maximum likelihood and the penalized maximum likelihood. We show, both theoretically and empirically, that when the aforementioned regression vectors are estimated without error, the symmetry-enforced maximum likelihood estimator has the smallest estimation error. However, in a more realistic setting when the regression vector is estimated by a sparsity-favoring computationally efficient method, the qualities of the estimators become relatively comparable with a slight advantage for the residual variance estimator.Comment: Companion R package at http://cran.r-project.org/web/packages/DESP/index.htm
    corecore