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We propose a self-tuning
√
Lasso method that simultaneously re-

solves three important practical problems in high-dimensional regres-
sion analysis, namely it handles the unknown scale, heteroscedasticity
and (drastic) non-Gaussianity of the noise. In addition, our analysis
allows for badly behaved designs, for example, perfectly collinear re-
gressors, and generates sharp bounds even in extreme cases, such as
the infinite variance case and the noiseless case, in contrast to Lasso.
We establish various nonasymptotic bounds for

√
Lasso including pre-

diction norm rate and sparsity. Our analysis is based on new impact
factors that are tailored for bounding prediction norm. In order to
cover heteroscedastic non-Gaussian noise, we rely on moderate devi-
ation theory for self-normalized sums to achieve Gaussian-like results
under weak conditions. Moreover, we derive bounds on the perfor-
mance of ordinary least square (ols) applied to the model selected
by

√
Lasso accounting for possible misspecification of the selected

model. Under mild conditions, the rate of convergence of ols post√
Lasso is as good as

√
Lasso’s rate. As an application, we consider

the use of
√
Lasso and ols post

√
Lasso as estimators of nuisance

parameters in a generic semiparametric problem (nonlinear moment
condition or Z-problem), resulting in a construction of

√
n-consistent

and asymptotically normal estimators of the main parameters.

1. Introduction. We consider a nonparametric regression model:

yi = f(zi) + σεi, i= 1, . . . , n,(1.1)

where yi’s are the outcomes, zi’s are vectors of fixed basic covariates, εi’s are
independent noise, f is the regression function and σ is an unknown scaling
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2 A. BELLONI, V. CHERNOZHUKOV AND L. WANG

parameter. The goal is to recover the values (fi)
n
i=1 = (f(zi))

n
i=1 of the re-

gression function f at zi’s. To achieve this goal, we use linear combinations of
technical regressors xi = P (zi) to approximate f , where P (zi) is a dictionary
of p-vector of transformations of zi. We are interested in the high dimension
low sample size case, where we potentially use p > n, to obtain a flexible
approximation. In particular, we are interested in cases where the regression
function can be well approximated by a sparse linear function of xi.

The model above can be written as yi = x′iβ0 + ri + σεi, where fi = f(zi)
and ri := fi − x′iβ0 is the approximation error. The vector β0 is defined as
a solution of an optimization problem to compute the oracle risk, which
balances bias and variance (see Section 2). The cardinality of the support
of β0 is denoted by s := ‖β0‖0. It is well known that ordinary least squares
(ols) is generally inconsistent when p > n. However, the sparsity assumption,
namely that s≪ n, makes it possible to estimate these models effectively
by searching for approximately the right set of the regressors. In particu-
lar, ℓ1-penalization has played a central role [14, 15, 18, 35, 40, 47, 52, 54].
It was demonstrated that ℓ1-penalized least squares estimators can achieve
the rate σ

√
s/n
√
log p, which is very close to the oracle rate σ

√
s/n achiev-

able when the true model is known. Importantly, in the context of linear
regression, these ℓ1-regularized problems can be cast as convex optimization
problems which make them computationally efficient (computable in polyno-
mial time). We refer to [14–17, 27, 38, 39, 42, 47] for a more detailed review
of the existing literature which has focused on the homoscedastic case.

In this paper, we attack the problem of nonparametric regression under
non-Gaussian, heteroscedastic errors εi, having an unknown scale σ. We pro-
pose to use a self-tuning

√
Lasso which is pivotal with respect to the scaling

parameter σ, and which handles non-Gaussianity and heteroscedasticity in
the errors. The resulting rates and performance guarantees are very similar
to the Gaussian case, due to the use of self-normalized moderate deviation
theory. Such results and properties,1 particularly the pivotality with respect
to the scale, are in contrast to the previous results and methods on others
ℓ1-regularized methods, for example, Lasso and Dantzig selector that use
penalty levels that depend linearly on the unknown scaling parameter σ.

There is now a growing literature on high-dimensional linear models2 al-
lowing for unknown scale σ. Städler et al. [43] propose a ℓ1-penalized max-

1Earlier literature, for example, in bounded designs [15], provides bounds using refine-
ments of Nemirovski’s inequality; see [26]. These results provide rates as good as in the
Gaussian case. However, when the design is unbounded (e.g., regressors generated as re-
alizations of independent Gaussian random variables), the rates of convergence provided
by these techniques are no longer sharp. The use of self-normalized moderate deviations
in the present context allows to handle the latter cases, with sharp rates.

2There is also a literature on penalized median regression, which can be used in the case
of symmetric errors, since these methods are independent of the unknown σ, cf. [5, 53].
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imum likelihood estimator for parametric Gaussian regression models. Bel-
loni et al. [12] consider

√
Lasso for a parametric homoscedastic model with

both Gaussian and non-Gaussian errors and establish that the choice of
the penalty parameter in

√
Lasso becomes pivotal with respect to σ. van de

Geer [49] considers an equivalent formulation of the (homoscedastic)
√
Lasso

to establish finite sample results and derives results in the parametric ho-
moscedastic Gaussian setting. Chen and Dalalyan [21] consider scaled fused
Dantzig selector to allow for different sparsity patterns and provide results
under homoscedastic Gaussian errors. Belloni and Chernozhukov [6] study
Lasso with a plug-in estimator of the noise level based on Lasso iterations
in a parametric homoscedastic setting. Chrétien and Darses [24] study plug-
in estimators and a trade-off penalty choice between fit and penalty in the
parametric case with homoscedastic Gaussian errors under random support
assumption (similar to [19]) using coherence condition. In a trace regression
model for recovery of a matrix, [34] proposes and analyses a version of the√
Lasso under homoscedasticity. A comprehensive review is given in [30]. All

these works rely essentially on the restricted eigenvalue condition [14] and
homoscedasticity and do not differentiate penalty levels across components.

In order to address the nonparametric, heteroscedastic and non-Gaussian
cases, we develop covariate-specific penalty loadings. To derive a practical
and theoretically justified choice of penalty level and loadings, we need to
account for the impact of the approximation error. We rely on moderate
deviation theory for self-normalized sums of [33] to achieve Gaussian-like
results in many non-Gaussian cases provided log p= o(n1/3), improving upon
results derived in the parametric case that required log p . logn, see [12].
(In the context of standard Lasso, the self-normalized moderate deviation
theory was first employed in [3].)

Our first contribution is the proposal of new design and noise impact fac-
tors, in order to allow for more general designs. Unlike previous conditions,
these factors are tailored for establishing performance bounds with respect
to the prediction norm, which is appealing in nonparametric problems. In
particular, collinear designs motivate our new condition. In studying their
properties, we further exploit the oracle based definition of the approximat-
ing function. The analysis based on these impact factors complements the
analysis based on restricted eigenvalue proposed in [14] and compatibility
condition in [48], which are more suitable for establishing rates for ℓk-norms.

The second contribution is a set of finite sample upper bounds and lower
bounds for estimation errors under prediction norm, and upper bounds on
the sparsity of the

√
Lasso estimator. These results are “geometric,” in that

they hold conditional on the design and errors provided some key events
occur. We further develop primitive sufficient conditions that allow for these
results to be applied to heteroscedastic non-Gaussian errors. We also give
results for other norms in the supplementary material [2].
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The third contribution develops properties of the estimator that applies
ordinary least squares (ols) to the model selected by

√
Lasso. Our focus is

on the case that
√
Lasso fails to achieve perfect model selection, including

cases where the oracle model is not completely selected by
√
Lasso. This

is usually the case in a nonparametric setting. This estimator intends to
remove the potentially significant bias toward zero introduced by the ℓ1-
norm regularization employed in the

√
Lasso estimator.

The fourth contribution is to study two extreme cases: (i) parametric
noiseless case and (ii) nonparametric infinite variance case.

√
Lasso has in-

teresting theoretical properties for these two extreme cases. For case (i),√
Lasso can achieves exact recovery in sharp contrast to Lasso. For case (ii),√
Lasso estimator can still be consistent with penalty choice that does not

depend on the scale of the noise. We develop the necessary modifications of
the penalty loadings and derive finite-sample bounds for the case of symmet-
ric noise. When noise is Student’s t-distribution with 2 degrees of freedom,
we recover Gaussian-noise rates up to a multiplicative factor of log1/2 n.

The final contribution is to provide an application of
√
Lasso methods

to a generic semiparametric problem, where some low-dimensional param-
eters are of interest and

√
Lasso methods are used to estimate nonpara-

metric nuisance parameters. These results extend the
√
n consistency and

asymptotic normality results of [3, 8] on a rather specific linear model to
a generic nonlinear problem, which covers smooth frameworks in statistics
and in econometrics, where the main parameters of interest are defined via
nonlinear instrumental variable/moment conditions or Z-conditions contain-
ing unknown nuisance functions (as in [20]). This and all the above results
illustrate the wide applicability of the proposed estimation procedure.

Notation. To make asymptotic statements, we assume that n→∞ and
p= pn→∞, and we allow for s= sn→∞. In what follows, all parameters
are indexed by the sample size n, but we omit the index whenever it does
not cause confusion. We work with i.n.i.d., independent but not necessar-
ily identically distributed data, (wi)

n
i=1, with k-dimensional real vectors wi

containing yi ∈ R and zi ∈ Rpz , the latter taking values in a set Z . We use
the notation (a)+ =max{a,0}, a∨ b=max{a, b} and a∧ b=min{a, b}. The
ℓ2-norm is denoted by ‖ · ‖, the ℓ1-norm is denoted by ‖ · ‖1, the ℓ∞-norm is
denoted by ‖ · ‖∞, and the ℓ0-“norm” ‖ · ‖0 denotes the number of nonzero
components of a vector. The transpose of a matrix A is denoted by A′. Given
a vector δ ∈Rp, and a set of indices T ⊂ {1, . . . , p}, we denote by δT the vec-
tor in which δTj = δj if j ∈ T , δTj = 0 if j /∈ T , and by |T | the cardinality
of T . For a measurable function f :Rk → R, the symbol E[f(wi)] denotes
the expected value of f(wi); En[f(w)] denotes the average n−1

∑n
i=1 f(wi);

Ē[f(w)] denotes the average expectation n−1
∑n

i=1E[f(wi)]; and Gn(f(w))

denotes n−1/2
∑n

i=1(f(wi)− E[f(wi)]). We will work with regressor values
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(xi)
n
i=1 generated via xi = P (zi), where P (·) :Z 7→ Rp is a measurable dic-

tionary of transformations, where p is potentially larger than n. We define
the prediction norm of a vector δ ∈Rp as ‖δ‖2,n = {En[(x

′δ)2]}1/2, and given

values y1, . . . , yn we define Q̂(β) = En[(y−x′β)2]. We use the notation a. b
to denote a≤Cb for some constant C > 0 that does not depend on n (and,
therefore, does not depend on quantities indexed by n like p or s); and a.P b
to denote a = OP (b). Φ denotes the cumulative distribution of a standard
Gaussian distribution and Φ−1 its inverse function.

2. Setting and estimators. Consider the nonparametric regression model:

yi = f(zi) + σεi, εi ∼ Fi,
(2.1)

E[εi] = 0, i= 1, . . . , n, Ē[ε2] = 1,

where zi are vectors of fixed regressors, εi are independent errors, and σ is
the scaling factor of the errors. In order to recover the regression function
f , we consider linear combinations of the covariates xi = P (zi) which are p-
vectors of transformation of zi normalized so that En[x

2
j ] = 1 (j = 1, . . . , p).

The goal is to estimate the value of the nonparametric regression func-
tion f at the design points, namely the values (fi)

n
i=1 := (f(zi))

n
i=1. In the

nonparametric settings, the regression functions f are generically nonsparse.
However, often they can be well approximated by a sparse model x′β0. One
way to find such approximating model is to let β0 be a solution of the fol-
lowing risk minimization problem:

min
β∈Rp

En[(f − x′β)2] +
σ2‖β‖0
n

.(2.2)

The problem (2.2) yields the so called oracle risk—an upper bound on the
risk of the best k-sparse least squares estimator in the case of homoscedastic
Gaussian errors, that is, the best estimator among all least squares estima-
tors that use k out of p components of xi to estimate fi. The solution
β0 achieves a balance between the mean square of the approximation er-
ror ri := fi − x′iβ0 and the variance, where the latter is determined by the
complexity ‖β0‖0 of the model (number of nonzero components of β0).

In what follows, we call β0 the target parameter value, T := supp(β0)
the oracle model, s := |T | = ‖β0‖0 the dimension of the oracle model, and
x′iβ0 the oracle or the best sparse approximation to fi. We note that T is
generally unknown. We summarize the preceding discussion as follows.

Condition ASM. We have data {(yi, zi) : i= 1, . . . , n} that for each n
obey the regression model (2.1), where yi are the outcomes, zi are vectors
of fixed basic covariates, the regressors xi := P (zi) are transformations of
zi, and εi are i.n.i.d. errors. The vector β0 is defined by (2.2) where the
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regressors xi are normalized so that En[x
2
j ] = 1, j = 1, . . . , p. We let

T := supp(β0), s := |T |, ri := fi− x′iβ0 and c2s := En[r
2].(2.3)

Remark 1 (Targeting x′iβ0 is the same as targeting fi’s). We focus

on estimating the oracle model x′iβ0 using estimators of the form x′iβ̂, and
we seek to bound estimation errors with respect to the prediction norm
‖β̂ − β0‖2,n := {En[(x

′β0 − x′β̂)2]}1/2. The bounds on estimation errors for
the ultimate target fi then follow from the triangle inequality, namely

√
En[(f − x′β̂)2]≤ ‖β̂ − β0‖2,n + cs.(2.4)

Remark 2 (Bounds on the approximation error). The approximation
errors typically satisfy cs ≤Kσ

√
(s ∨ 1)/n for some fixed constant K, since

the optimization problem (2.2) balances the (squared) norm of the approx-
imation error (the norm of the bias) and the variance; see [4, 6, 45]. In
particular, this condition holds for wide classes of functions; see Example S
of Section 4 dealing with Sobolev classes and Section C.2 of supplementary
material [2].

2.1. Heteroscedastic
√
Lasso. In this section, we formally define the es-

timators which are tailored to deal with heteroscedasticity.
We propose to define the

√
Lasso estimator as

β̂ ∈ arg min
β∈Rp

√
Q̂(β) +

λ

n
‖Γβ‖1,(2.5)

where Q̂(β) = En[(y − x′β)2], Γ = diag(γ1, . . . , γp) is a diagonal matrix of
penalty loadings. The scaled ℓ1-penalty allows component specific adjust-
ments to more efficiently deal with heteroscedasticity.3 Throughout, we as-
sume γj ≥ 1 for j = 1, . . . , p.

In order to reduce the shrinkage bias of
√
Lasso, we consider the post

model selection estimator that applies ordinary least squares (ols) to a model

T̂ that contains the model selected by
√
Lasso. Formally, let T̂ be such that

supp(β̂) = {j ∈ {1, . . . , p} : |β̂j |> 0} ⊆ T̂ ,

and define the ols post
√
Lasso estimator β̃ associated with T̂ as

β̃ ∈ arg min
β∈Rp

√
Q̂(β) :βj = 0 if j /∈ T̂ .(2.6)

3When errors are homoscedastic, we can set Γ = Ip. In the heteroscedastic case, using
Γ = Ip may require setting λ too conservatively, leading to over-penalization and worse
performance bounds. In the paper, we develop data-dependent choice of Γ that allows us
to avoid over-penalization thereby improving the performance.
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A sensible choice for T̂ is simply to set T̂ = supp(β̂). Moreover, we allow
for additional components (potentially selected through an arbitrary data-
dependent procedure) to be added, which is relevant for practice.

2.2. Typical conditions on the Gram matrix. The Gram matrix En[xx
′]

plays an important role in the analysis of estimators in this setup. When
p > n, the smallest eigenvalue of the Gram matrix is 0, which creates iden-
tification problems. Thus, to restore identification, one needs to restrict the
type of deviation vectors δ corresponding to the potential deviations of the
estimator from the target value β0. Because of the ℓ1-norm regularization,
the following restricted set is important:

∆c̄ = {δ ∈Rp :‖ΓδT c‖1 ≤ c̄‖ΓδT ‖1, δ 6= 0} for c̄≥ 1.

The restricted eigenvalue κc̄ of the Gram matrix En[xx
′] is defined as

κc̄ := min
δ∈∆c̄

√
s‖δ‖2,n
‖ΓδT ‖1

.(2.7)

The restricted eigenvalues can depend on n, T , and Γ, but we suppress the
dependence in our notation. The restricted eigenvalues (2.7) are variants of
the restricted eigenvalue introduced in [14] and of the compatibility condition
in [48] that accommodate the penalty loadings Γ. They were proven to be
useful for many designs of interest specially for establishing ℓk-norm rates.
Below we suggest their generalizations that are useful for deriving rates in
prediction norm.

The minimal and maximal m-sparse eigenvalues of a matrix M ,

φmin(m,M) := min
‖δTc‖0≤m,δ 6=0

δ′Mδ

‖δ‖2 ,
(2.8)

φmax(m,M) := max
‖δTc‖0≤m,δ 6=0

δ′Mδ

‖δ‖2 .

Typically, we consider M = En[xx
′] or M = Γ−1En[xx

′]Γ−1. When M is
not specified, we mean M = En[xx

′], that is, φmin(m) = φmin(m,En[xx
′])

and φmax(m) = φmax(m,En[xx
′]). These quantities play an important role in

the sparsity and post model selection analysis. Moreover, sparse eigenvalues
provide a simple sufficient condition to bound restricted eigenvalues; see [14].

3. Finite-sample analysis of
√

Lasso. Next, we establish several finite-
sample results regarding the

√
Lasso estimator. Importantly, these results

are based on new impact factors that can be very well behaved under re-
peated (i.e., collinear) regressors, and which strictly generalize the restricted
eigenvalue (2.7) and compatibility constants.
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The following event plays a central role in the analysis:

λ/n≥ c‖Γ−1S̃‖∞ where S̃ := En[x(σε + r)]/
√

En[(σε + r)2](3.1)

is the score of Q̂1/2 at β0 (S̃ = 0 if En[(σε + r)2] = 0). Throughout the
section, we assume such event holds. Later we provide choices of λ and Γ
based on primitive conditions such that the event in (3.1) holds with a high
probability.

3.1. New noise and design impact factors. We define the following noise
and design impact factors for a constant c > 1:

̺c := sup
‖δ‖2,n>0,δ∈Rc

|S̃′δ|
‖δ‖2,n

,(3.2)

κ̄ := inf
‖Γ(β0+δ)‖1<‖Γβ0‖1

√
s‖δ‖2,n

‖Γβ0‖1 − ‖Γ(β0 + δ)‖1
,(3.3)

where Rc := {δ ∈Rp :‖Γδ‖1 ≥ c(‖Γ(β0+δ)‖1−‖Γβ0‖1)}. For the case β0 = 0,
we define ̺c = 0 and κ̄=∞. These quantities depend on n, β0 and Γ, albeit
we suppress this when convenient.

An analysis based on the quantities ̺c and κ̄ will be more general than
the one relying only on restricted eigenvalues (2.7). This follows because
(2.7) yields one possible way to bound both κ̄ and ̺c, namely,

κ̄≥ κ := inf
δ∈int(∆1)

√
s‖δ‖2,n

‖ΓδT ‖1 − ‖ΓδT c‖1
≥ min

δ∈∆1

√
s‖δ‖2,n
‖ΓδT ‖1

≥ min
δ∈∆c̄

√
s‖δ‖2,n
‖ΓδT ‖1

= κc̄,

̺c ≤ sup
δ∈∆c̄

‖Γ−1S̃‖∞‖Γδ‖1
‖δ‖2,n

≤ sup
δ∈∆c̄

‖Γ−1S̃‖∞(1 + c̄)‖ΓδT ‖1
‖δ‖2,n

≤ (1 + c̄)
√
s

κc̄
‖Γ−1S̃‖∞,

where c > 1 and c̄ := (c + 1)/(c − 1) > 1. The quantities κ̄ and ̺c can be
well behaved (i.e., κ̄ > 0 and ̺c <∞) even in the presence of repeated (i.e.,
collinear) regressors (see Remark 4 for a simple example), while restricted
eigenvalues and compatibility constants would be zero in that case.

The design impact factor κ̄ in (3.3) strictly generalizes the original re-
stricted eigenvalue (2.7) proposed in [14] and the compatibility constants
proposed in [48] and in [46].4 The design conditions based on these concepts
are relatively weak, and hence (3.3) is a useful concept.

4The compatibility condition defined in [46] is defined as: ∃ν(T )> 0 such that

inf
δ∈∆3

√
s‖δ‖2,n

(1 + ν(T ))‖ΓδT ‖1 −‖ΓδTc‖1
> 0.
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The noise impact factor ̺c also plays an important role. It depends on the
noise, design and approximation errors, and can be controlled via empirical
process methods. Note that under (3.1), the deviation δ̂ = β̂ − β0 of the√
Lasso estimator from β0 obeys δ̂ ∈ Rc, explaining its appearance in the

definition of ̺c. The lemmas below summarize the above discussion.

Lemma 1 (Bounds on and invariance of design impact factor). Under
Condition ASM, we have κ̄≥ κ≥ κ1 ≥ κc̄. Moreover, if copies of regressors
are included with the same corresponding penalty loadings, the lower bound
κ on κ̄ does not change.

Lemma 2 (Bounds on and invariance of noise impact factor). Under

Condition ASM, we have ̺c ≤ (1 + c̄)
√
s‖Γ−1S̃‖∞/κc̄. Moreover, if copies

of regressors with indices j ∈ T c are included with the same corresponding
penalty loadings, ̺c does not change (see also Remark 4).

Lemma 3 (Estimators belong to restricted sets). Assume that for some

c > 1 we have λ/n ≥ c‖Γ−1S̃‖∞, then δ̂ ∈ Rc. The latter condition implies

that δ̂ ∈∆c̄ for c̄= (c+ 1)/(c− 1).

3.2. Finite-sample bounds on
√
Lasso. In this section, we derive finite-

sample bounds for the prediction norm of the
√
Lasso estimator. These

bounds are established under heteroscedasticity, without knowledge of the
scaling parameter σ, and using the impact factors proposed in Section 3.1.
For c > 1, let c̄= (c+ 1)/(c− 1) and consider the conditions

λ/n≥ c‖Γ−1S̃‖∞ and ζ̄ := λ
√
s/(nκ̄)< 1.(3.4)

Theorem 1 (Finite sample bounds on estimation error). Under Condi-
tion ASM and (3.4), we have

‖β̂ − β0‖2,n ≤ 2

√
Q̂(β0)Bn, Bn :=

̺c + ζ̄

1− ζ̄2 .

We recall that the choice of λ does not depend on the scaling parameter
σ. The impact of σ in the bound of Theorem 1 comes through the factor
Q̂1/2(β0) ≤ σ

√
En[ε2] + cs where cs is the size of the approximation error

defined in Condition ASM. Moreover, under typical conditions that imply κc̄

We have that κ̄≥ κ, where κ corresponds to setting ν(T ) = 0 and using ∆1 in place of
∆3, which strictly weakens [46]’s definition. Allowing for ν(T ) = 0 is necessary for allowing
collinear regressors.
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to be bounded away from zero, for example, under Condition P of Section 4
and standard choice of penalty, we have with a high probability

Bn .

√
s log(p ∨ n)

n
=⇒ ‖β̂ − β0‖2,n . σ

√
s log(p ∨ n)

n
.

Thus, Theorem 1 generally leads to the same rate of convergence as in the
case of the Lasso estimator that knows σ since En[ε

2] concentrates around
1 under (2.1) and provided a law of large numbers holds. We derive perfor-
mance bounds for other norms of interest in the supplementary material [2].

The next result deals with Q̂(β̂) as an estimator for Q̂(β0) and σ
2.

Theorem 2 (Estimation of σ). Under Condition ASM and (3.4)

−2̺c
√
Q̂(β0)Bn ≤

√
Q̂(β̂)−

√
Q̂(β0)≤ 2ζ̄

√
Q̂(β0)Bn.

Under only Condition ASM, we have

|
√
Q̂(β̂)− σ| ≤ ‖β̂ − β0‖2,n + cs + σ|En[ε

2]− 1|.

We note that further bounds on |En[ε
2] − 1| are implied by von Bahr–

Esseen’s and Markov’s inequalities, or by self-normalized moderate deviation
(SNMD) theory as in Lemma 4. As a result, the theorem implies consistency

|Q̂1/2(β̂)− σ|= oP (1) under mild moment conditions; see Section 4. Theo-
rem 2 is also useful for establishing the following sparsity properties.

Theorem 3 (Sparsity bound for
√
Lasso). Suppose Condition ASM,

(3.4), Q̂(β0)> 0, and 2̺cBn ≤ 1/(cc̄). Then we have

|supp(β̂)| ≤ s · 4c̄2(Bn/ζ̄κ̄)
2 min
m∈M

φmax(m,Γ
−1En[xx

′]Γ−1),

where M= {m ∈N :m> sφmax(m,Γ
−1En[xx

′]Γ−1) · 8c̄2(Bn/(ζ̄ κ̄))
2}. More-

over, if κc̄ > 0 and ζ̄ < 1/
√
2 we have

|supp(β̂)| ≤ s · (4c̄2/κc̄)2 min
m∈M∗

φmax(m,Γ
−1En[xx

′]Γ−1),

where M∗ = {m ∈N :m> sφmax(m,Γ
−1En[xx

′]Γ−1) · 2(4c̄2/κc̄)2}.

Remark 3 (On the sparsity bound). Section 4 will show that under
minimal and maximal sparse eigenvalues of order s logn bounded away from
zero and from above, Theorem 3 implies that with a high probability

|supp(β̂)|. s := |supp(β0)|.
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That is, the selected model’s size will be of the same order as the size of
the oracle model. We note, however, that the former condition is merely a
sufficient condition. The bound | supp(β̂)| . s will apply for other designs
of interest. This can be the case even if κc̄ = 0 (e.g., in the aforementioned
design, if we change it by adding a single repeated regressor).

Remark 4 (Maximum sparse eigenvalue and sparsity). Consider the
case of f(z) = z with p repeated regressors xi = (zi, . . . , zi)

′ where |z| ≤K.
In this case, one could set Γ = I ·K. In this setting, there is a sparse solution
for
√
Lasso, but there is also a solution which has all p nonzero coefficients.

Nonetheless, the bound for the prediction error rate will be well behaved
since κ̄ and ζ̄ are invariant to the addition of copies of z and

κ̄≥ 1/K and ̺c = |En[εz]|/{En[ε
2]En[z

2]}1/2 .P 1/
√
n

under mild moment conditions on the noise (e.g., Ē[|ε|3]≤C). In this case,
φmax(m,Γ

−1En[xx
′]Γ−1) = (m+ 1)En[z

2]/K2 and the set M only contains
integers larger than p, leading to the trivial bound m̂≤ p.

3.3. Finite-sample bounds on ols post
√
Lasso. Next, we consider the

ols estimator applied to the model T̂ that was selected by
√
Lasso or in-

cludes such model (plus other components that the data analyst may wish

to include), namely supp(β̂)⊆ T̂ . We are interested in the case when model
selection does not work perfectly, as occurs in applications.

The following result establishes performance bounds for the ols post
√
Lasso

estimator. Following [6], the analysis accounts for the data-driven choice of

components and for the possibly misspecified selected model (i.e., T * T̂ ).

Theorem 4 (Performance of ols post
√
Lasso). Under Condition ASM

and (3.4), let supp(β̂)⊆ T̂ , and m̂= |T̂ \T |. Then we have that the ols post√
Lasso estimator based on T̂ satisfies

‖β̃ − β0‖2,n ≤
σ
√
s+ m̂‖En[xε]‖∞√

φmin(m̂)
+ 2cs +2

√
Q̂(β0)Bn.

The result is derived from the sparsity of the model T̂ and from its ap-
proximating ability. Note the presence of the new term ‖En[xε]‖∞. Bounds
on ‖En[xε]‖∞ can be derived using the same tools used to justify the
penalty level λ, via moderate deviation theory for self-normalized sums [33],
Gaussian approximations to empirical processes [22, 23] or empirical pro-
cess inequalities as in [5]. Under mild conditions, we have ‖En[xε]‖∞ ≤
C
√

log(pn)/n with probability 1− o(1).



12 A. BELLONI, V. CHERNOZHUKOV AND L. WANG

3.4. Two extreme cases. Case (i): Parametric noiseless case. Consider
the case that σ = 0 and cs = 0. Therefore, the regression function is exactly
sparse, f(zi) = x′iβ0. In this case,

√
Lasso can exactly recover the f and even

β0 under weak conditions under a broad range of penalty levels.

Theorem 5 (Exact recovery for the parametric noiseless case). Under
Condition ASM, let σ = 0 and cs = 0. Suppose that λ > 0 obeys the growth
restriction ζ̄ = λ

√
s/[nκ̄]< 1. Then we have ‖β̂ − β0‖2,n = 0, and if, more-

over, κ1 > 0, then β̂ = β0.

Remark 5 (Perfect recovery and Lasso). It is worth mentioning that
for any λ > 0, unless β0 = 0, Lasso cannot achieve exact recovery. Moreover,
it is not obvious how to properly set the penalty level for Lasso even if we
knew a priori that it is a parametric noiseless model. In contrast,

√
Lasso

can automatically adapt to the noiseless case.

Case (ii): Nonparametric infinite variance. We conclude this section with
the infinite variance case. The finite sample theory does not rely on E[ε2]<
∞. Instead it relies on the choice of penalty level and penalty loadings
to satisfy λ/n ≥ c‖Γ−1S̃‖∞. Under symmetric errors, we exploit the sub-
Gaussian property of self-normalized sums [25] to develop a choice of penalty
level λ and loadings Γ = diag(γj , j = 1, . . . , p), where

λ= (1+ un)c
√
n{1 +

√
2 log(2p/α)} and γj = max

1≤i≤n
|xij |,(3.5)

where un is defined below and typically we can select un = o(1).

Theorem 6 (
√
Lasso prediction norm for symmetric errors). Consider a

nonparametric regression model with data (yi, zi)
n
i=1, yi = f(zi) + σεi, xi =

P (zi) such that En[x
2
j ] = 1 (j = 1, . . . , p), εi’s are independent symmetric

errors, and β0 defined as any solution to (2.2). Let the penalty level and
loadings as in (3.5). Assume that there exist sequences of constants η1 ≥ 0
and η2 ≥ 0 both converging to 0 and a sequence of constants 0≤ un ≤ 1 such
that P (En[σε

2]> (1+ un)En[(σε + r)2])≤ η1 and P (En[ε
2]≤ {1 + un}−1)≤

η2 for all n. If ζ̄ = λ
√
s/[nκ̄]< 1, then with probability at least 1−α−η1−η2

we have λ/n≥ c‖Γ−1S̃‖∞ and

‖β̂ − β0‖2,n ≤ 2Bn

(
cs + σ

√
En[ε2]

)
.

The rate of convergence will be affected by how fast En[ε
2] diverges. That

is, the final rate will depend on the particular tail properties of the dis-
tribution of the noise. The rate also depends on un through λ. In many
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examples, un can be chosen as a constant or even a sequence going to zero
sufficiently slowly, as in the next corollary where εi follows a t distribution
with 2 degrees of freedom, that is, εi ∼ t(2).

Corollary 1 [
√
Lasso prediction norm for εi ∼ t(2)]. Under the setting

of Theorem 6, suppose that εi ∼ t(2) and are i.i.d. for all i. Then for any

τ ∈ (0,1/2), with probability at least 1−α− 3
2τ −

2 log(4n/τ)
nun/[1+un]

− 72 log2 n
n1/2(logn−6)2

,

we have λ/n≥ c‖Γ−1S̃‖∞ and, if ζ̄ = λ
√
s/[nκ̄]< 1, we have

‖β̂ − β0‖2,n ≤ 2(cs + σ

√
log(4n/τ) + 2

√
2/τ)Bn.

Remark 6 [Asymptotic performance in t(2) case]. Provided that re-
gressors are uniformly bounded and satisfy the sparse eigenvalues condition
(4.3), we have that the restricted eigenvalue κc̄ is bounded away from zero

for the specified choice of Γ. Because Corollary 1 ensures λ/n≥ c‖Γ−1S̃‖∞
with the stated probability, by Lemmas 1 and 2 we have

̺c + ζ̄ .
λ
√
s

nκc̄
. (1 + un)

√
s log(p ∨ n)

n
=⇒ Bn .

√
s log(p ∨ n)

n
.

Therefore, under these design conditions, assuming that s log(p/α) = o(n)
and that σ is fixed, and setting 1/α = o(logn), we can select un = 1/2 and
τ = 1/ logn in Corollary 1, to conclude that the

√
Lasso estimator satisfies

‖β̂ − β0‖2,n . (cs + σ
√

logn)

√
s log(p ∨ n)

n
,(3.6)

with probability 1 − α(1 + o(1)). Despite the infinite variance, the bound
(3.6) differs from the Gaussian noise case only by a

√
logn factor.

4. Asymptotics analysis under primitive conditions. In this section, we
formally state an algorithm to compute the estimators and we provide rates
of convergence results under simple primitive conditions.

We propose setting the penalty level as

λ= c
√
nΦ−1(1− α/2p),(4.1)

where α controls the confidence level, and c > 1 is a slack constant similar to
[14], and the penalty loadings according to the following iterative algorithm.

Algorithm 1 (Estimation of square-root Lasso loadings). Choose α ∈
(1/n,1/2] and a constant K ≥ 1 as an upper bound on the number of it-
erations. (0) Set k = 0, λ as in (4.1), and γ̂j,0 = max1≤i≤n |xij | for each
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j = 1, . . . , p. (1) Compute the
√
Lasso estimator β̂ based on the current

penalty loadings Γ = Γ̂k = diag{γ̂j,k, j = 1, . . . , p}. (2) Set

γ̂j,k+1 := 1 ∨
√

En[x
2
j(y − x′β̂)

2]/

√
En[(y − x′β̂)2].

(3) If k >K, stop; otherwise set k← k+1 and go to step 1.

Remark 7 (Parameters of the algorithm). The parameter 1 − α is a
confidence level which guarantees near-oracle performance with probability
at least 1 − α; we recommend α = 0.05/ log n. The constant c > 1 is the
slack parameter used as in [14]; we recommend c= 1.01. In order to invoke
moderate deviation theorem for self-normalized sums, we need to be able to
bound with a high probability:

√
En[x2jε

2]/
√

En[ε2]≤ γj,0.(4.2)

The choice of γ̂j,0 =max1≤i≤n |xij | automatically achieves (4.2). Nonetheless,
we recommend iterating the procedure to avoid unnecessary over-penalization,
since at each iteration more precise estimates of the penalty loadings are
achieved. These recommendations are valid either in finite or large samples
under the conditions stated below. They are also supported by the numerical
experiments (see Section G of supplementary material [2]).

Remark 8 (Alternative estimation of loadings). Algorithm 1 relies on

the
√
Lasso estimator β̂. Another possibility is to use the ols post

√
Lasso es-

timator β̃. This leads to similar theoretical and practical results. Moreover,
we can define the initial penalty loading as γ̂j,0 =W{En[x

4
j ]}1/4 where the

kurtosis parameter W > {Ē[ε4]}1/4/{Ē[ε2]}1/2 is pivotal with respect to the
scaling parameter σ, but we need to assume an upper bound for this quan-
tity. The purpose of this parameter is to bound the kurtosis of the marginal
distribution of errors, namely that of F̄ε(v) = n−1

∑n
i=1P (εi ≤ v). We rec-

ommend W = 2, which permits a wide class of marginal distributions of
errors, in particular it allows F̄ε to have tails as heavy as those of t(a) with
a > 5. This method also achieves (4.2); see Section C.1 of supplementary
material [2].

The following is a set of simple sufficient conditions which yields practical
corollaries. Let ℓnր∞ be a sequence of positive constants.

Condition P. The noise and regressors obey supn≥1 Ē[|ε|q]<∞, q > 4,

infn≥1min1≤j≤pEn[x
2
jE[ε

2]]> 0, supn≥1max1≤j≤pEn[|xj |3E[|ε|3]]<∞ and

sup
n≥1

φmax(sℓn,En[xx
′])/φmin(sℓn,En[xx

′])<∞.(4.3)
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Moreover, we have that maxi≤n,j≤p |xij|2/ℓn = o(1), log p≤ C(n/ log2 n)1/3,

ℓ2ns log(p ∨ n)≤Cn/ logn, s≥ 1, and c2s ≤Cσ2(s log(p ∨ n)/n).

Condition P imposes conditions on moments that allow us to use results
of the moderate deviation theory for self-normalized sums, weak require-
ments on (s, p,n), well behaved sparse eigenvalues as a sufficient condition
on the design to bound the impact factors and a mild condition on the
approximation errors (see Remark 2 for a discussion and references).

The proofs in this section rely on the following result due to [33].

Lemma 4 (Moderate deviations for self-normalized sums). Let X1, . . . ,Xn

be independent, zero-mean random variables and δ ∈ (0,1]. Let Sn,n = nEn[X],

V 2
n,n = nEn[X

2],Mn = {Ē[|X|2+δ ]}1/{2+δ}/{Ē[X2]}1/2 < ∞ and n ≤
nδ/(2(2+δ))M−1

n . For some absolute constant A, uniformly on 0 ≤ |x| ≤
nδ/(2(2+δ))M−1

n /n − 1, we have
∣∣∣∣
P (Sn,n/Vn,n ≥ x)

(1−Φ(x))
− 1

∣∣∣∣≤
A

2+δ
n

.

The following theorem summarizes the asymptotic performance of
√
Lasso,

based upon Algorithm 1, for commonly used designs.

Theorem 7 (Performance of
√
Lasso and ols post

√
Lasso under Con-

dition P). Suppose Conditions ASM and P hold. Let α ∈ (1/n,1/ logn),
c ≥ 1.01, the penalty level λ be set as in (4.1) and the penalty loadings as
in Algorithm 1. Then for all n ≥ n0, with probability at least 1 − α{1 +
C̄/ logn} − C̄{n−1/2 logn+ n1−q/4} we have

‖β̂ − β0‖2,n ≤ σC̄
√
s log(n ∨ (p/α))

n
,

√
En[(f − x′β̂)2]≤ σC̄

√
s log(n ∨ (p/α))

n
,

‖β̂ − β0‖1 ≤ σC̄
√
s2 log(n ∨ (p/α))

n
and |supp(β̂)| ≤ C̄s,

where n0 and C̄ depend only on the constants in Condition P. Moreover, the
ols post

√
Lasso estimator satisfies with the same probability for all n≥ n0,

‖β̃ − β0‖2,n ≤ σC̄
√
s log(n ∨ (p/α))

n
,

√
En[(f − x′β̃)2]≤ σC̄

√
s log(n ∨ (p/α))

n
and
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‖β̂ − β0‖1 ≤ σC̄
√
s2 log(n ∨ (p/α))

n
.

Remark 9 (Gaussian-like performance and normalization assumptions).
Theorem 7 yields bounds on the estimation errors that are “Gaussian-like,”
namely the factor

√
log(p/α) and other constants in the performance bound

are the same as if errors were Gaussian, but the probabilistic guarantee is not
1− α but rather 1− α+ o(1), which together with mildly more restrictive
growth conditions is the cost of non-Gaussianity. We also note that the
normalization En[x

2
j ] = 1, j = 1, . . . , p is not used in the construction of the

estimator, and the results of the theorem hold under the condition: C1 ≤
En[x

2
j ] ≤ C2, j = 1, . . . , p uniformly for all n ≥ n0, for some positive, finite

constants C1 and C2.

The results above establish that
√
Lasso achieves the same near oracle

rate of convergence as Lasso despite not knowing the scaling parameter σ.
They allow for heteroscedastic errors with mild restrictions on its moments.
Moreover, it allows for an arbitrary number of iterations. The results also
establish that the upper bounds on the rates of convergence of

√
Lasso and

ols post
√
Lasso coincide under these conditions. This is confirmed also by

Monte–Carlo experiments reported in the supplementary material [2], with
ols post

√
Lasso performing no worse and often outperforming

√
Lasso due

to having a much smaller bias. Notably, this theoretical and practical perfor-
mance occurs despite the fact that

√
Lasso may in general fail to correctly

select the oracle model T as a subset and potentially select variables not
in T .

Example S (Performance for Sobolev balls and p-rearranged Sobolev
balls). In this example, we show how our results apply to an important
class of Sobolev functions, and illustrates how modern selection drastically
reduces the dependency on knowing the order of importance of the basis
functions.

Suppose that zi’s are generated as i.i.d. from Uniform(0,1), xi’s are formed
as (xij)

p
j=1 with xij = Pj(zi), σ = 1, and εi ∼ N(0,1). Following [45], con-

sider an orthonormal bounded basis {Pj(·)}∞j=1 in L2[0,1], consider func-

tions f(z) =
∑∞

j=1 θjPj(z) in a Sobolev space S(α,L) for some α ≥ 1 and
L > 0. This space consists of functions whose Fourier coefficients θ satisfy∑∞

j=1 |θj|<∞ and

θ ∈Θ(α,L) =

{
θ ∈ ℓ2(N) :

∞∑

j=1

j2αθ2j ≤ L2

}
.

We also consider functions in a p-rearranged Sobolev space RS(α,p,L).
These functions take the form f(z) =

∑∞
j=1 θjPj(z) such that

∑∞
j=1 |θj|<∞
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and θ ∈ΘR(α,p,L), where

ΘR(α,p,L) =




θ ∈ ℓ2(N) :

∃ permutationΥ :{1, . . . , p}→ {1, . . . , p}
p∑

j=1

j2αθ2Υ(j) +
∞∑

j=p+1

j2αθ2j ≤ L2




.

Note that S(α,L)⊂RS(α,p,L).
In the supplementary material [2], we show that the rate-optimal choice

for the size of the support of the oracle model β0 is s . n1/[2α+1]. This
rate can be achieved with the support consisting of indices j that cor-
respond to the s largest coefficients |θj|. The oracle projection estimator

β̂or that uses these “ideal” s components achieves optimal prediction error
rate uniformly over the regression functions f ∈ S(α,L) or f ∈RS(α,p,L):
(En[{f −

∑∞
j=1 β̂

or
j Pj(z)}2])1/2 .P n

−α/[2α+1]. Under mild regularity condi-

tions, as in Theorem 7,
√
Lasso estimator β̂ that uses xi = (P1(zi), . . . , Pp(z))

′

achieves a near-optimal rate uniformly over the regression functions f ∈
S(α,L) or f ∈RS(α,p,L):

√
En[(f − x′β̂)2].P n

−α/[2α+1]
√

log(n ∨ p),
without knowing the “ideal” s components among xi. The same statement
also holds for the ols post

√
Lasso estimator β̃.

Therefore, the
√
Lasso and ols post

√
Lasso estimators achieve near oracle

rates uniformly over rearranged Sobolev balls under mild conditions. As a
contrast, consider the “naive oracle” series projection estimator that uses
the first s components of the basis, assuming that the parameter space
is S(α,L). This estimator achieves the optimal rate for the Sobolev space
S(α,L), but fails to be uniformly consistent over p-rearranged Sobolev space
RS(α,p,L), since we can select a model f ∈ RS(α,p,L) such that its first
s Fourier coefficients are zero, and the remaining coefficients are nonzero,
therefore, the “naive oracle” fit will be 0 plus a centered noise, and the
estimator will be inconsistent for this f .

We proceed to state a result on estimation of σ2 under the asymptotic
framework.

Corollary 2 (Estimation of σ2 under asymptotics). Suppose Condi-
tions ASM and P hold. Let α ∈ (1/n,1/ logn), c ≥ 1.01, the penalty level
λ be set as in (4.1) and the penalty loadings as in Algorithm 1. Then for
all n ≥ n0, with probability at least 1 − α{1 + C̄/ logn} − C̄{n−1/2 logn +
n1−q/4} − 2δ,

|Q̂(β̂)− σ2| ≤ σ2C̄s log(n∨ (p/α))
n

+
σ2C̄

√
s log(p ∨ n)√
δn1−1/q

+
σ2C̄√
δn
.
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Moreover, provided further that s2 log2(p ∨ n)≤Cn/ logn, we have that

{σ2ξn}−1n1/2(Q̂(β̂)− σ2)⇒N(0,1),

where ξ2n = Ē[{ε2 −E[ε2]}2].

This result extends [6, 44] to the heteroscedastic, non-Gaussian cases.

5. An application to a generic semi-parametric inference problem. In
this section, we present a generic application of the methods of this paper to
semiparametric problems, where some lower-dimensional structural parame-
ter is of interest and the

√
Lasso or ols post

√
Lasso are used to estimate the

high-dimensional nuisance function. We denote the true value of the target
parameter by θ0 ∈Θ⊂Rd, and assume that it satisfies the following moment
condition:

E[ψ(wi, θ0, h0(zi))] = 0, i= 1, . . . , n,(5.1)

where wi is a random vector taking values in W , containing vector zi tak-
ing values in Z as a subcomponent; the function (w,θ, t) 7→ ψ(w,θ, t) =
(ψj(w,θ, t))

d
j=1 is a measurable map from an open neighborhood of W ×

Θ × T , a subset of Rdw+d+dt , to Rd, and z 7→ h0(z) = (h0m(z))Mm=1 is the
nuisance function mapping Z to T ⊂RM . We note that M and d are fixed
and do not depend on n in what follows.

Perhaps the simplest, that is linear, example of this kind arises in the in-
strumental variable (IV) regression problem in [3, 8], where ψ(wi, θ0, h0(zi)) =
(ui − θ0di)h0(zi), where ui is the response variable, di is the endogenous
variable, zi is the instrumental variable, h0(zi) = E[di|zi] is the optimal in-
strument, and E[(ui − θ0di)|zi] = 0. Other examples include partially lin-
ear models, heterogeneous treatment effect models, nonlinear instrumen-
tal variable, Z-problems as well as many others (see, e.g., [1, 3, 7, 9–
11, 13, 20, 28, 29, 31, 32, 49, 55, 56]), which all give rise to nonlinear moment
conditions with respect to the nuisance functions.

We assume that the nuisance functions h0 arise as conditional expecta-
tions of some variables that can be modeled and estimated in the approxi-
mately sparse framework, as formally described below. For instance, in the
example mentioned above, the function h0 is indeed a conditional expec-
tation of the endogenous variable given the instrumental variable. We let
ĥ= (ĥm)Mm=1 denote the estimator of h0, which obeys conditions stated be-

low. The estimator θ̂ of θ0 is constructed as any approximate εn-solution in
Θ to a sample analog of the moment condition above:

‖En[ψ(w, θ̂, ĥ(z))]‖ ≤ εn where εn = o(n−1/2).(5.2)
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The key condition needed for regular estimation of θ0 is the orthogonality
condition:

E[∂tψ(wi, θ0, h0(zi))|zi] = 0, i= 1, . . . , n,(5.3)

where here and below we use the symbol ∂t to abbreviate ∂
∂t′ . For instance,

in the IV example this condition holds, since ∂tψ(wi, θ0, h0(zi)) = (ui− θ0di)
and E[(ui − θ0di)|zi] = 0 by assumption. In other examples, it is important
to construct the scores that have this orthogonality property. Generally, if
we have a score, which identifies the target parameter but does not have
the orthogonality property, we can construct the score that has the required
property by projecting the original score onto the orthocomplement of the
tangent space for the nuisance parameter; see, for example, [36, 50, 51] for
detailed discussions. This often results in a semiparametrically efficient score
function.

The orthogonality condition reduces sensitivity to “crude” estimation of
the nuisance function h0. Indeed, under appropriate sparsity assumptions
stated below, the estimation errors for h0, arising as sampling, approxima-
tion, and model selection errors, will be of order oP (n

−1/4). The orthog-
onality condition together with other conditions will guarantee that these
estimation errors do not impact the first-order asymptotic behavior of the
estimating equations, so that

√
nEn[ψ(w, θ̂, ĥ(z))] =

√
nEn[ψ(w, θ̂, h0(z))] + oP (1).(5.4)

This leads us to a regular estimation problem, despite ĥ being highly non-
regular.

In what follows, we shall denote by c and C some positive constants, and
by Ln a sequence of positive constants that may grow to infinity as n→∞.

Condition SP. For each n, we observe the independent data vectors
(wi)

n
i=1 with law determined by the probability measure P = Pn. Uniformly,

for all n the following conditions hold. (i) The true parameter values θ0
obeys (5.1) and is interior relative to Θ, namely there is a ball of fixed
positive radius centered at θ0 contained in Θ, where Θ is a fixed compact
subset of Rd. (ii) The map ν 7→ ψ(w,ν) is twice continuously differentiable
with respect to ν = (νk)

K
k=1 = (θ, t) for all ν ∈ Θ × T , where T is convex,

with supν∈Θ×T |∂νk∂νrψj(wi, ν)| ≤ Ln a.s., for all k, r ≤ K, j ≤ d, and i ≤
n. The conditional second moments of the first derivatives are bounded
as follows: P-a.s. E(supν∈Θ×T |∂νkψj(wi, ν)|2|zi) ≤ C for each k, j and i.
(iii) The orthogonality condition (5.3) holds. (iv) The following identifiability
condition holds: for all θ ∈ Θ, ‖Ē[ψ(w,θ,h0(z))]‖ ≥ 2−1(‖Jn(θ − θ0)‖ ∧ c),
where Jn := Ē[∂θψ(w,θ0, h0(z))] has singular values bounded away from zero
and above. (v) Ē[‖ψ(w,θ0, h0(z))‖3] is bounded from above.
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In addition to the previous conditions, Condition SP imposes standard
identifiability and certain smoothness on the problem, requiring second deriv-
atives to be bounded by Ln, which is allowed to grow with n subject to
restrictions specified below. It is possible to allow for nondifferentiable ψ
at the cost of a more complicated argument; see [11]. In what follows, let
δnց 0 be a sequence of constants approaching zero from above.

Condition AS. The following conditions hold for each n. (i) The func-
tion h0 = (h0m)Mm=1 :Z 7→ T is approximately sparse, namely, for each m,
h0m(·)=

∑p
l=1Pml(·)β0ml+rm(·), where Pml :Z 7→R are approximating func-

tions, β0m = (β0ml)
p
l=1 obeys | supp(β0m)| ≤ s, s≥ 1, and the approximation

errors (rm)Mm=1 :Z → R obey Ē[r2m(z)] ≤ Cs log(p ∨ n)/n. There is an esti-

mator ĥm(·) = ∑p
l=1Pml(·)β̂ml of h0m such that, with probability at least

1− δn, ĥ= (ĥm)Mm=1 maps Z into T , β̂m = (β̂ml)
p
l=1 satisfies ‖β̂m − β0m‖1 ≤

C
√
s2 log(p ∨ n)/n and En[(ĥm(z)− h0m(z))2]≤ Cs log(p ∨ n)/n for all m.

(ii) The scalar random variables ψ̇mjl(wi) := ∂tmψj(wi, θ0, h0(z))Pml(zi) obey

maxm,j,lEn[|ψ̇mjl(w)|2] ≤ L2
n with probability at least 1 − δn and maxm,j,l

(Ē[|ψ̇mjl(w)|3])1/3/(Ē[|ψ̇mjl(w)|2])1/2 ≤Mn. (iii) Finally, the following growth
restrictions hold as n→∞:

L2
ns

2 log2(p ∨ n)/n→ 0 and log(p ∨ n)n−1/3M2
n→ 0.(5.5)

The assumption records a formal sense in which approximate sparsity is
used, as well as requires reasonable behavior of the estimator ĥ. In the pre-
vious sections, we established primitive conditions under which this behav-
ior occurs in problems where h0 arise as conditional expectation functions.
By virtue of (5.5) the assumption implies that {En(ĥm(z)− h0m(z))2}1/2 =
oP (n

−1/4). It is standard that the square of this term multiplied by
√
n

shows up as a linearization error for
√
n(θ̂ − θ0) and, therefore, this term

does not affect its first-order behavior. Moreover, the assumption implies by
virtue of (5.5) that ‖β̂m − β0m‖1 = oP (L

−1
n (log(p ∨ n))−1), which is used to

control another key term in the linearization as follows:√
nmax

j,m,l
|En[ψ̇mjl(w)]|‖β̂m − β0m‖1 .P Ln

√
log(p∨ n)‖β̂m − β0m‖1 = oP (1),

where the bound follows from an application of the moderate deviation
inequalities for self-normalized sums (Lemma 4). The idea for this type of
control is borrowed from [3], who used it in the IV model above.

Theorem 8. Under Conditions SP and AS, the estimator θ̂ that obeys
equation (5.2) and θ̂ ∈ Θ with probability approaching 1, satisfies

√
n(θ̂ −

θ0) = −J−1
n

1√
n

∑n
i=1ψ(wi, θ0, h0(zi)) + oP (1). Furthermore, provided Ωn =

Ē[ψ(w,θ0, h0(z))ψ(w,θ0, h0(z))
′] has eigenvalues bounded away from zero,

Ω−1/2
n Jn

√
n(θ̂− θ0)⇒N(0, I).
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This theorem extends the analogous result in [3, 8] for a specific linear
problem to a generic nonlinear setting, and could be of independent inter-
est in many problems cited above. The theorem allows for the probability
measure P = Pn to change with n, which implies that the confidence bands
based on the result have certain uniform validity (“honesty”) with respect
to P, as formalized in [10], thereby constructively addressing [37]’s critique.
See [11] for a generalization of the result above to the case dim(θ0)≫ n.

Example PL. It is instructive to conclude this section by inspecting the
example of approximately sparse partially linear regression [9, 10], which also
nests the sparse linear regression model [55]. The partially linear model of
[41] is

yi = diθ0 + g(zi) + εi, E[εi|zi, di] = 0,

di =m(zi) + vi, E[vi|zi] = 0.

The target is the real parameter θ0, and an orthogonal score function ψ
for this parameter is ψ(wi, θ, t) = (yi − θ(di − t2) − t1)(di − t2), where t =
(t1, t2)

′ and wi = (yi, di, z
′
i)
′. Let ℓ(zi) := θ0m(zi)+g(zi), and h0(zi) := (ℓ(zi),

m(zi))
′ = (E[yi|zi],E[di|zi])′. Note that

E[ψ(wi, θ0, h0(zi))|zi] = 0 and E[∂tψ(wi, θ, h0(zi))|zi] = 0,

so the orthogonality condition holds. If the regression functions ℓ(zi) and
m(zi) are approximately sparse with respect to xi = P (zi), we can estimate
them by

√
Lasso or ols post

√
Lasso regression of yi on xi and di on xi,

respectively. The resulting estimator θ̂ of θ0, defined as a solution to (5.2),
is a
√
Lasso analog of Robinson’s [41] estimator. If assumptions of Theorem 8

hold, θ̂ obeys

Ω−1/2
n Jn

√
n(θ̂− θ0)⇒N(0,1)

for Jn = Ē[v2] and Ωn = Ē[ε2v2]. In a homoscedastic model, θ̂ is semipara-
metrically efficient, since its asymptotic variance Ωn/J

2
n reduces to the ef-

ficiency bound E[ε2]/E[v2] of Robinson [41]; as pointed out in [9, 10]. In
the linear regression model, this estimator is first-order equivalent to, but
different in finite samples from, a one-step correction from the scaled Lasso
proposed in [55]; in the partially linear model, it is equivalent to the post-
double selection method of [9, 10].

APPENDIX A: PROOFS OF SECTION 3

Proof of Lemma 1. The first result holds by the inequalities given in
the main text.
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To show the next statement, note that T does not change by including
repeated regressors (indeed, since T is selected by the oracle (2.2), T will not
contain repeated regressors). Let R denote the set of repeated regressors and
x̃i = (x′i, z

′
i)
′ where xi ∈ Rp is the vector of original regressors and zi ∈ R|R|

the vector of repeated regressors. We denote by Γ̃ and ‖ · ‖2,ñ the penalty

loadings and the prediction norm associated with (x̃i)
n
i=1. Let δ̃ = (δ1

′
, δ2

′
)′,

where δ1 ∈ Rp and δ2 ∈ R|R|, define δ̄2 ∈ Rp so that δ̄2j = δ2j if j ∈ R, and
δ̄2j = 0 if j /∈R, and denote δ = δ1 + δ̄2. It follows that

κ≥ ‖δ̃‖2,ñ
‖Γ̃δ̃T ‖1 −‖Γ̃δ̃T c‖1

=
‖δ‖2,n

‖Γδ1T ‖1 − ‖Γδ1T c‖1 −‖Γδ̄2T ‖1 −‖Γδ̄2T c‖1
,

which is minimized in the case that δ1 = δ and δ̄2 = 0. Thus, the worst
case for κ̄ correspond to δ̄2 = 0 which corresponds to ignoring the repeated
regressors. �

Proof of Lemma 2. The first part is shown in the main text. The
second part is proven in supplementary material [2]. �

Proof of Lemma 3. By definition of β̂,

√
Q̂(β̂)−

√
Q̂(β0)≤ λ

n‖Γβ0‖1−
λ
n‖Γβ̂‖1. By convexity of

√
Q̂, by−S̃ ∈ ∂

√
Q̂(β0), and by λ/n≥ cn‖Γ−1S̃‖∞,

we have

√
Q̂(β̂) −

√
Q̂(β0) ≥ −S̃′δ̂ ≥ −‖Γ−1S̃‖∞‖Γδ̂‖1 ≥ − λ

cn‖Γδ̂‖1 where

δ̂ = β̂−β0. Combining the lower and upper bounds yields ‖Γδ̂‖1 ≥ c(‖Γ(β0+
δ̂)‖1 − ‖Γβ0‖1). Thus, δ̂ ∈ Rc; that δ̂ ∈∆c̄ follows by a standard argument
based on elementary inequalities. �

Proof of Theorem 1. First, note that by Lemma 3 we have δ̂ :=
β̂ − β0 ∈Rc. By optimality of β̂ and definition of κ̄, ζ̄ = λ

√
s/[nκ̄], we have

√
Q̂(β̂)−

√
Q̂(β0)≤

λ

n
‖Γβ0‖1 −

λ

n
‖Γβ̂‖1 ≤ ζ̄‖δ̂‖2,n.(A.1)

Multiplying both sides by

√
Q̂(β̂)+

√
Q̂(β0) and since (a+b)(a−b) = a2−b2

‖δ̂‖22,n ≤ 2En[(σε + r)x′δ̂] + (

√
Q̂(β̂) +

√
Q̂(β0))ζ̄‖δ̂‖2,n.(A.2)

From (A.1), we have

√
Q̂(β̂)≤

√
Q̂(β0) + ζ̄‖δ̂‖2,n so that

‖δ̂‖22,n ≤ 2En[(σε + r)x′δ̂] + 2

√
Q̂(β0)ζ̄‖δ̂‖2,n + ζ̄2‖δ̂‖22,n.
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Since |En[(σε + r)x′δ̂]|=
√
Q̂(β0)|S̃′δ̂| ≤

√
Q̂(β0)̺c‖δ̂‖2,n, we obtain

‖δ̂‖22,n ≤ 2

√
Q̂(β0)̺c‖δ̂‖2,n +2

√
Q̂(β0)ζ̄‖δ̂‖2,n + ζ̄2‖δ̂‖22,n,

and the result follows provided ζ̄ < 1. �

Proof of Theorem 2. We have δ̂ := β̂ − β0 ∈Rc under the condition
that λ/n ≥ c‖Γ−1S̃‖∞ by Lemma 3. We also have ζ̄ = λ

√
s/[nκ̄] < 1 by

assumption.
First, we establish the upper bound. By the previous proof, we have in-

equality (A.1). The bound follows from Theorem 1 to bound ‖δ̂‖2,n. To

establish the lower bound, by convexity of

√
Q̂ and the definition of ̺c we

have

√
Q̂(β̂)−

√
Q̂(β0)≥−S̃′δ̂ ≥−̺c‖δ̂‖2,n. Thus, by Theorem 1 we obtain√

Q̂(β̂)−
√
Q̂(β0)≥−2

√
Q̂(β0)̺cBn.

Moreover, by the triangle inequality

|
√
Q̂(β̂)− σ| ≤ |

√
Q̂(β̂)− σ{En[ε

2]}1/2|+ σ|{En[ε
2]}1/2 − 1|

and the right-hand side is bounded by ‖β̂ − β0‖2,n + cs + σ|En[ε
2]− 1|. �

Proof of Theorem 3. For notational convenience, we denote φn(m) =
φmax(m,Γ

−1En[xx
′]Γ−1). We shall rely on the following lemma, whose proof

is given after the proof of this theorem.

Lemma 5 (Relating sparsity and prediction norm). Under Condition

ASM, let G⊆ supp(β̂). For any λ > 0, we have

λ

n

√
Q̂(β̂)

√
|G| ≤

√
|G|‖Γ−1S̃‖∞

√
Q̂(β0)

+
√
φmax(|G \ T |,Γ−1En[xx′]Γ−1)‖β̂ − β0‖2,n.

Define m̂ := | supp(β̂) \ T |. In the event λ/n≥ c‖Γ−1S̃‖∞, by Lemma 5

(√
Q̂(β̂)

Q̂(β0)
− 1

c

)
λ

n

√
Q̂(β0)

√
|supp(β̂)| ≤

√
φn(m̂)‖β̂ − β0‖2,n.(A.3)

Under the condition ζ̄ = λ
√
s/[nκ̄]< 1, we have by Theorems 1 and 2 that

(
1− 2̺cBn −

1

c

)
λ

n

√
Q̂(β0)

√
|supp(β̂)| ≤

√
φn(m̂)2

√
Q̂(β0)Bn,
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where Bn = ̺c+ζ̄
1−ζ̄2

. Since we assume 2̺cBn ≤ 1/(cc̄), we have

√
|supp(β̂)| ≤ 2c̄

√
φn(m̂)

n

λ
Bn =

√
s
√
φn(m̂)2c̄Bn/(ζ̄ κ̄),

where the last equality follows from ζ̄ = λ
√
s/[nκ̄].

Let L := 2c̄Bn/(ζ̄ κ̄). Consider any m ∈M, and suppose m̂ > m. There-
fore, by the sublinearity of maximum sparse eigenvalues (see Lemma 3

in [6]), φn(ℓm) ≤ ⌈ℓ⌉φn(m) for ℓ ≥ 1, and m̂ ≤ | supp(β̂)| we have m̂ ≤
s ·⌈ m̂m⌉φn(m)L2. Thus, since ⌈k⌉< 2k for any k ≥ 1 we havem< s ·2φn(m)L2

which violates the condition of m ∈ M and s. Therefore, we must have
m̂ ≤ m. Repeating the argument once more with m̂ ≤ m we obtain m̂ ≤
s · φn(m)L2. The result follows by minimizing the bound over m ∈M.

To show the second part, by Lemma 2 and λ/n ≥ c‖Γ−1S̃‖∞, we have

̺c ≤ λ
√
s

nκc̄

1+c̄
c . Lemma 1 yields κ̄≥ κc̄ and recall ζ̄ = λ

√
s/(nκ̄). Therefore,

Bn/(ζ̄ κ̄)≤
1 + {(λ√s/(nκc̄))((1 + c̄)/c)}{nκ̄/(λ√s)}

κ̄(1− ζ̄2)

≤ 1 + (1 + c̄)/c

κc̄(1− ζ̄2)
=

c̄

κc̄(1− ζ̄2)
≤ 2c̄

κc̄
,

where the last inequality follows from the condition ζ̄ ≤ 1/
√
2. Thus, it

follows that 4c̄2(Bn/(ζ̄ κ̄))
2 ≤ (4c̄2/κc̄)

2 which impliesM∗ ⊆M. �

Proof of Lemma 5. Recall that Γ = diag(γ1, . . . , γp). β̂ is the solution
of a conic optimization problem (see Section H.1 of supplementary mate-
rial [2]). Let â denote the solution to its dual problem: maxa∈Rn En[ya] :

‖Γ−1En[xja]‖∞ ≤ λ/n,‖a‖ ≤ √n. By strong duality En[yâ] =
‖Y−Xβ̂‖√

n
+

λ
n

∑p
j=1 γj |β̂j |. Moreover, by the first-order optimality conditions,

En[xj â]β̂j = λγj|β̂j |/n holds for every j = 1, . . . , p. Thus, we have

En[yâ] =
‖Y −Xβ̂‖√

n
+

p∑

j=1

En[xj â]β̂j =
‖Y −Xβ̂‖√

n
+ En

[
â

p∑

j=1

xj β̂j

]
.

Rearranging the terms, we have En[(y − x′β̂)â] = ‖Y −Xβ̂‖/
√
n.

If ‖Y −Xβ̂‖ = 0, we have

√
Q̂(β̂) = 0 and the statement of the lemma

trivially holds. If ‖Y −Xβ̂‖> 0, since ‖â‖ ≤√n the equality can only hold

for â=
√
n(Y −Xβ̂)/‖Y −Xβ̂‖= (Y −Xβ̂)/

√
Q̂(β̂).
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Next, note that for any j ∈ supp(β̂) we have En[xj â] = sign(β̂j)λγj/n.

Therefore, for any subset G⊆ supp(β̂) we have
√
Q̂(β̂)

√
|G|λ

= ‖Γ−1(X ′(Y −Xβ̂))G‖

≤ ‖Γ−1(X ′(Y −Xβ0))G‖+ ‖Γ−1(X ′X(β0 − β̂))G‖

≤
√
|G|n‖Γ−1En[x(σε + r)]‖∞

+ n
√
φmax(|G \ T |,Γ−1En[xx′]Γ−1)‖β̂ − β0‖2,n

=
√
|G|n

√
Q̂(β0)‖Γ−1S̃‖∞

+ n
√
φmax(|G \ T |,Γ−1En[xx′]Γ−1)‖β̂ − β0‖2,n,

where we used

‖Γ−1(X ′X(β̂ − β0))G‖ ≤ sup
‖αTc‖0≤|G\T |,‖α‖≤1

|α′Γ−1X ′X(β̂ − β0)|

≤ sup
‖αTc‖0≤|G\T |,‖α‖≤1

‖α′Γ−1X ′‖‖X(β̂ − β0)‖

≤ n
√
φmax(|G \ T |,Γ−1En[xx′]Γ−1)‖β̂ − β0‖2,n. �

Proof of Theorem 4. In this proof, let f = (f1, . . . , fn)
′, R= (r1, . . . ,

rn)
′, ε= (ε1, . . . , εn)

′ (n-vectors) and X = [x1; . . . ;xn]
′ (an n×p matrix). For

a set of indices S ⊂ {1, . . . , p}, define PS =X[S](X[S]′X[S])−X[S]′, where
we interpret PS as a null operator if S is empty. We have that f −Xβ̃ =
(I −PT̂ )f − σPT̂ ε, where I is the identity operator. Therefore,

√
n‖β0 − β̃‖2,n = ‖Xβ0 −Xβ̃‖

= |f −Xβ̃ −R‖
(A.4)

= ‖(I −PT̂ )f − σPT̂ ε−R‖
≤ ‖(I −PT̂ )f‖+ σ‖PT̂ ε‖+ ‖R‖

where ‖R‖ ≤√ncs. Since for m̂= |T̂ \ T |, we have

‖X[T̂ ](X[T̂ ]′X[T̂ ])−‖op ≤
√
1/φmin(m̂,En[xx′]) =

√
1/φmin(m̂),

[where the bound is interpreted as +∞ if φmin(m̂) = 0], the term ‖PT̂ ε‖ in
(A.4) satisfies

‖PT̂ ε‖ ≤
√

1/φmin(m̂)‖X[T̂ ]′ε/
√
n‖ ≤

√
|T̂ |/φmin(m̂)‖X ′ε/

√
n‖∞.
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Therefore, we have ‖β̃ − β0‖2,n ≤ σ
√
s+m̂‖En[xε]‖∞√

φmin(m̂)
+ cs + cT̂ , where cT̂ =

minβ∈Rp

√
En[(f − x′βT̂ )2]. Since supp(β̂)⊆ T̂ and (3.4) holds,

cT̂ = min
β∈Rp
{En[(f − x′βT̂ )

2]}1/2 ≤ {En[(f − x′β̂)2]}1/2

≤ cs + ‖β0 − β̂‖2,n ≤ cs +2

√
Q̂(β0)Bn,

where we have used Theorem 1. �

Proof of Theorem 5. Note that because σ = 0 and cs = 0, we have√
Q̂(β0) = 0 and

√
Q̂(β̂) = ‖β̂ − β0‖2,n. Thus, by optimality of β̂ we have

‖β̂ − β0‖2,n + λ
n‖Γβ̂‖1 ≤ λ

n‖Γβ0‖1 which implies ‖Γβ̂‖1 ≤ ‖Γβ0‖1. Moreover,

δ = β̂ − β0 satisfies ‖δ‖2,n ≤ λ
n(‖Γβ0‖1 − ‖Γβ̂‖1)≤ ζ̄‖δ‖2,n, where ζ̄ =

λ
√
s

nκ̄ <
1. Hence, ‖δ‖2,n = 0.

Since ‖Γβ̂‖1 ≤ ‖Γβ0‖1 implies δ ∈ ∆1, it follows that 0 =
√
s‖δ‖2,n ≥

‖ΓδT ‖1/κ1 ≥ 1
2‖Γδ‖1/κ1, which implies that δ = 0 if κ1 > 0. �

Proof of Theorem 6. If λ/n ≥ c‖Γ−1S̃‖∞ and ζ̄ = λ
√
s/[nκ̄] < 1,

by Theorem 1 we have ‖β̂ − β0‖2,n ≤ 2

√
Q̂(β0)Bn, and the bound on the

prediction norm follows by

√
Q̂(β0)≤ cs + σ

√
En[ε2].

Thus, we need to show that the choice of λ and Γ ensures the event
λ/n ≥ c‖Γ−1S̃‖∞ with probability no less than 1− α− η1 − η2. Since γj =
max1≤i≤n |xij | ≥ En[x

2
j ] = 1, by the choice of un we have

P

(
c‖Γ−1S̃‖∞ >

λ

n

)
≤ P

(
max
1≤j≤p

c|En[(σε + r)xj ]|
γj
√

En[(σε)2]
>

λ

n(1 + un)1/2

)
+ η1

≤ I + II + η1,

I := P

(
max
1≤j≤p

|En[εxj ]|
γj
√

En[ε2]
>

√
2 log(2p/α)√

n

)
,

II := P

( ‖En[rx]‖∞√
En[(σε)2]

>
(1 + un)

1/2

√
n

)
.

We invoke the following lemma, which is proven in [6]—see step 2 of the
proof of [6]’s Theorem 2; for completeness, supplementary material [2] also
provides the proof.

Lemma 6. Under Condition ASM, we have ‖En[xr]‖∞ ≤min{ σ√
n
, cs}.
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By Lemma 6, ‖En[rx]‖∞ ≤ σ/
√
n and P (En[ε

2] ≤ {1 + un}−1) ≤ η2, we
have II ≤ P (

√
En[(ε)2]≤ {1 + un}−1/2)≤ η2. Also,

I ≤ p max
1≤j≤p

P

(√
n|En[εxj ]|√
En[x

2
jε

2]
>
√
2 log(2p/α)

)
≤ α

where we used that γj
√

En[ε2]≥
√

En[x
2
jε

2], the union bound, and the sub-

Gaussian inequality for self-normalized sums stated in Theorem 2.15 of [25],
since εi’s are independent and symmetric by assumption. �

Proof of Corollary 1. See supplementary material [2]. �

APPENDIX B: PROOFS OF SECTION 4

Proof of Theorem 7. The proof is given in supplementary material
[2] and follows from Theorems 1–3 with the help of Lemma 7 in supplemen-
tary material [2]. �

Proof of Corollary 2. See supplementary material [2]. �

APPENDIX C: PROOFS FOR SECTION 5

Proof of Theorem 8. Throughout the proof, we use the notation

B(w) := max
j,k

sup
ν∈Θ×T

|∂νkψj(w,ν)|, τn :=
√
s log(p∨ n)/n.

Step 1. (A preliminary rate result.) In this step, we claim that ‖θ̂−θ0‖.P

τn. By definition, ‖En[ψ(w, θ̂, ĥ(z))]‖ ≤ εn and θ̂ ∈ Θ with probability 1−
o(1), which implies via triangle inequality that with the same probability:

‖Ē[ψ(w,θ,h0(z))]|θ=θ̂
‖ ≤ εn + I1 + I2 .P τn,

where I1 and I2 are defined in step 2 below, and the last bound also follows
from step 2 below and from the numerical tolerance obeying εn = o(n−1/2)

by assumption. Since by Condition SP(iv), 2−1(‖Jn(θ̂ − θ0)‖ ∧ c) is weakly

smaller than the left-hand side of the display, we conclude that ‖θ̂− θ0‖.P

τn, using that singular values of Jn are bounded away from zero uniformly
in n by Condition SP(v).

Step 2. (Define and bound I1 and I2.) We claim that:

I1 := sup
θ∈Θ
‖Enψ(w,θ, ĥ(z))− Enψ(w,θ,h0(z))‖.P τn,

I2 := sup
θ∈Θ
‖Enψ(w,θ,h0(z))− Ēψ(w,θ,h0(z))‖.P n

−1/2.
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Using Taylor’s expansion, for h̃(z; θ, j) denoting a point on a line connect-
ing vectors h0(z) and h(z), which can depend on θ and j,

I1 ≤
d∑

j=1

M∑

m=1

sup
θ∈Θ
|En[∂tmψj(w,θ, h̃(z; θ, j))(ĥm(z)− h0m(z))]|

≤ dM{EnB
2(w)}1/2max

m
{En(ĥm(z)− h0m(z))2}1/2,

where the last inequality holds by definition of B(w) given earlier and
Hölder’s inequality. Since ĒB2(w)≤C by Condition SP(ii), EnB

2(w).P 1
by Markov’s inequality. By this, by Condition AS(i), by d and M fixed,
conclude that I1 .P τn.

Using Jain–Marcus’ theorem, as stated in Example 2.11.13 in [51], we
conclude that

√
nI2 .P 1. Indeed the hypotheses of that example follow

from the assumption that Θ is a fixed compact subset of Rd, and from
the Lipschitz property, ‖ψ(w,θ,h0(z)) − ψ(w, θ̃, h0(z))‖ ≤

√
dB(w)‖θ̃ − θ‖

holding uniformly for all θ and θ̃ in Θ, with ĒB2(w)≤C.

Step 3. (Main step.) We have that
√
n‖Enψ(w, θ̂, ĥ(z))‖ ≤ εn

√
n. Appli-

cation of Taylor’s theorem and the triangle inequality gives

‖
√
nEnψ(w,θ0, h0(z))+Jn

√
n(θ̂−θ0)‖ ≤ ε

√
n+‖II 1‖+‖II 2‖+‖II 3‖= oP (1),

where Jn = Ē∂θψ(w,θ0, h0(z)), the terms II 1, II 2 and II 3 are defined and
bounded below in step 4; the oP (1) bound follows from step 4 and from
εn
√
n= o(1) holding by assumption. Conclude using Condition SP(iv) that

‖J−1
n

√
nEnψ(w,θ0, h0(z)) +

√
n(θ̂− θ0)‖= oP (1),

which verifies the first claim of the theorem. Application of Liapunov’s cen-
tral limit theorem in conjunction with Condition SP(v) and the conditions
on Ωn imposed by the theorem imply the second claim.

Step 4. (Define and bound II 1, II 2 and II 3.) Let II 1 := (II 1j)
d
j=1 and

II 2 = (II 2j)
d
j=1, where

II 1j :=

M∑

m=1

√
nEn[∂tmψj(w,θ0, h0(z))(ĥm(z)− h0m(z))],

II 2j :=

K∑

r,k=1

√
nEn[∂νk∂νrψj(w, ν̃(w; j)){ν̂r(w)− ν0r(w)}{ν̂k(w)− ν0k(w)}],

II 3 :=
√
n(En∂θψ(w,θ0, h0(z))− Jn)(θ̂− θ0),

where ν0(w) := (ν0k(w))
K
k=1 := (θ′0, h0(z)

′)′; K = d + M ; ν̂(w) :=

(ν̂k(w))
K
k=1 := (θ̂′, ĥ(z)′)′, and ν̃(w; j) is a vector on the line connecting ν0(w)
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and ν̂(w) that may depend on j. We show in this step that ‖II 1‖+ ‖II 2‖+
‖II 3‖.P o(1).

The key portion of the proof is bounding II 1, which is very similar to the
argument given in [3] (pages 2421–2423). We repeat it here for completeness.
We split II 1 = III 1 + III 2 = (III 1j)

d
j=1 + (III 2j)

d
j=1, where

III 1j :=
M∑

m=1

√
nEn

[
∂tmψj(w,θ0, h0(z))

p∑

l=1

Pml(z)(β̂ml − β0ml)

]
,

III 2j :=

M∑

m=1

√
nEn[∂tmψj(w,θ0, h0(z))rm(z)].

Using Hölder inequality, maxj |III 1j | ≤ Mmaxj,m,l |
√
nEnψ̇mjl(w)|‖β̂m −

β0m‖1. By Condition AS(i) maxm ‖β̂m−β0m‖1 ≤C
√
sτn with probability at

least 1− δn. Moreover, using Eψ̇mjl(wi) = 0 for all i, which holds by the or-

thogonality property (5.3), and that maxj,m,lEn|ψ̇mjl(w)|2 ≤ L2
n with proba-

bility at least 1−δn by Condition AS(ii), we can apply Lemma 4 on the mod-
erate deviations for self-normalized sum, following the idea in [3], to conclude
that maxj,m,l |

√
nEnψ̇mjl(w)| ≤

√
2 log(pn)Ln with probability 1−o(1). Note

that this application requires the side condition
√

2 log(pn)Mnn
−1/6 = o(1)

be satisfied for Mn defined in Condition AS(ii), which indeed holds by Con-
dition AS(iii). We now recall the details of this calculation:

P
(
max
j,m,l
|
√
nEnψ̇mjl(w)|>

√
2 log(pn)Ln

)

≤ P
(
max
j,m,l
|
√
nEnψ̇mjl(w)|/

√
En|ψ̇mjl(w)|2 >

√
2 log(pn)

)
+ δn

≤ dMpmax
j,m,l

P (|
√
nEnψ̇mjl(w)|/

√
En|ψ̇mjl(w)|2 >

√
2 log(pn)) + δn

≤ dMp2(1−Φ(
√

2 log(pn)))(1 + o(1)) + δn ≤ dMp
2

pn
(1 + o(1)) + δn

= o(1),

where the penultimate inequality occurs due to the application of Lemma 4
on moderate deviations for self-normalized sums. Putting bounds together
we conclude that ‖III 1‖ ≤

√
dmaxj |III 1j | .P Ln

√
log(p ∨ n)√sτn = o(1),

where o(1) holds by the growth restrictions imposed in Condition AS(iii).
The bound on III 2 also follows similarly to [3]. III 2j is a sum of M terms,

each having mean zero and variance of order s log(p ∨ n)/n= o(1). Indeed,
the mean zero occurs because

n−1/2
n∑

i=1

E[∂tmψj(wi, θ0, h0(zi))rm(zi)] = n−1/2
n∑

i=1

E[0 · rm(zi)] = 0
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for each mth term, which holds by E[∂tmψj(wi, θ0, h0(zi))|zi] = 0, that is,
the orthogonality property (5.3), and the law of iterated expectations. To
derive the variance bound, note that for each mth term the variance is

n−1
n∑

i=1

E[{∂tmψj(wi, θ0, h0(zi))}2r2m(zi)]≤CĒ[r2m(z)]≤C2s log(p∨ n)/n,

which holds by E[{∂tmψj(wi, θ0, h0(zi))}2|zi]≤E[B2(w)|zi]≤C a.s. by virtue
of Condition SP(iii), and the law iterated expectations; the last bound in the
display holds by AS(i). Hence, var(III 2j)≤M2C2s log(p ∨ n)/n. s log(p ∨
n)/n= o(1). Therefore, ‖III 2‖ ≤

∑d
j=1 |III 2j|.P

√
s log(p ∨ n)/n= o(1) by

Chebyshev’s inequality.
To deduce that ‖II 2‖= oP (1), we use Condition AS(i)–(iii), the claim of

step 1, and Hölder inequalities, concluding that

max
j
|II 2j | ≤

√
nK2Lnmax

k
En{ν̂k(w)− ν0k(w)}2 .P

√
nLnτ

2
n = o(1).

Finally, since ‖II 3‖ ≤
√
n‖(En∂θψ(w,θ0, h0(z))−Jn)‖op‖θ̂−θ0‖ and since

‖En∂θψ(w,θ0, h0(z))−Jn‖op .P n
−1/2 by Chebyshev’s inequality, using that

ĒB2(w) ≤ C by Condition AS(ii), and ‖θ̂ − θ0‖ .P τn by step 1, conclude
that ‖II 3‖.P τn = o(1). �
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