34,989 research outputs found

    Stabilizing Rabi Oscillation of a Charge Qubit via Atomic Clock Technique

    Full text link
    We propose a superconducting circuit-atom hybrid, where the Rabi oscillation of single excess Cooper pair in the island is stabilized via the common atomic-clock technique. The noise in the superconducting circuit is mapped onto the voltage source which biases the Cooper-pair box via an inductor and a gate capacitor. The fast fluctuations of the gate charge are significantly suppressed by an inductor-capacitor resonator, leading to a long-relaxation-time Rabi oscillation. More importantly, the residual low-frequency fluctuations are further reduced by using the general feedback-control method, in which the voltage bias is stabilized via continuously measuring the dc-Stark-shift-induced atomic Ramsey signal. The stability and coherence time of the resulting charge-qubit Rabi oscillation are both enhanced. The principal structure of this Cooper-pair-box oscillator is studied in detail.Comment: 4 figure

    Switching Quantum Dynamics for Fast Stabilization

    Get PDF
    Control strategies for dissipative preparation of target quantum states, both pure and mixed, and subspaces are obtained by switching between a set of available semigroup generators. We show that the class of problems of interest can be recast, from a control--theoretic perspective, into a switched-stabilization problem for linear dynamics. This is attained by a suitable affine transformation of the coherence-vector representation. In particular, we propose and compare stabilizing time-based and state-based switching rules for entangled state preparation, showing that the latter not only ensure faster convergence with respect to non-switching methods, but can designed so that they retain robustness with respect to initialization, as long as the target is a pure state or a subspace.Comment: 15 pages, 4 figure

    Optimal Unravellings for Feedback Control in Linear Quantum Systems

    Full text link
    For quantum systems with linear dynamics in phase space much of classical feedback control theory applies. However, there are some questions that are sensible only for the quantum case, such as: given a fixed interaction between the system and the environment what is the optimal measurement on the environment for a particular control problem? We show that for a broad class of optimal (state-based) control problems (the stationary Linear-Quadratic-Gaussian class), this question is a semi-definite program. Moreover, the answer also applies to Markovian (current-based) feedback.Comment: 5 pages. Version published by Phys. Rev. Let

    General fixed points of quasi-local frustration-free quantum semigroups: from invariance to stabilization

    Full text link
    We investigate under which conditions a mixed state on a finite-dimensional multipartite quantum system may be the unique, globally stable fixed point of frustration-free semigroup dynamics subject to specified quasi-locality constraints. Our central result is a linear-algebraic necessary and sufficient condition for a generic (full-rank) target state to be frustration-free quasi-locally stabilizable, along with an explicit procedure for constructing Markovian dynamics that achieve stabilization. If the target state is not full-rank, we establish sufficiency under an additional condition, which is naturally motivated by consistency with pure-state stabilization results yet provably not necessary in general. Several applications are discussed, of relevance to both dissipative quantum engineering and information processing, and non-equilibrium quantum statistical mechanics. In particular, we show that a large class of graph product states (including arbitrary thermal graph states) as well as Gibbs states of commuting Hamiltonians are frustration-free stabilizable relative to natural quasi-locality constraints. Likewise, we provide explicit examples of non-commuting Gibbs states and non-trivially entangled mixed states that are stabilizable despite the lack of an underlying commuting structure, albeit scalability to arbitrary system size remains in this case an open question.Comment: 44 pages, main results are improved, several proofs are more streamlined, application section is refine

    Real-time Information, Uncertainty and Quantum Feedback Control

    Full text link
    Feedback is the core concept in cybernetics and its effective use has made great success in but not limited to the fields of engineering, biology, and computer science. When feedback is used to quantum systems, two major types of feedback control protocols including coherent feedback control (CFC) and measurement-based feedback control (MFC) have been developed. In this paper, we compare the two types of quantum feedback control protocols by focusing on the real-time information used in the feedback loop and the capability in dealing with parameter uncertainty. An equivalent relationship is established between quantum CFC and non-selective quantum MFC in the form of operator-sum representation. Using several examples of quantum feedback control, we show that quantum MFC can theoretically achieve better performance than quantum CFC in stabilizing a quantum state and dealing with Hamiltonian parameter uncertainty. The results enrich understanding of the relative advantages between quantum MFC and quantum CFC, and can provide useful information in choosing suitable feedback protocols for quantum systems.Comment: 24 page
    corecore