research

Switching Quantum Dynamics for Fast Stabilization

Abstract

Control strategies for dissipative preparation of target quantum states, both pure and mixed, and subspaces are obtained by switching between a set of available semigroup generators. We show that the class of problems of interest can be recast, from a control--theoretic perspective, into a switched-stabilization problem for linear dynamics. This is attained by a suitable affine transformation of the coherence-vector representation. In particular, we propose and compare stabilizing time-based and state-based switching rules for entangled state preparation, showing that the latter not only ensure faster convergence with respect to non-switching methods, but can designed so that they retain robustness with respect to initialization, as long as the target is a pure state or a subspace.Comment: 15 pages, 4 figure

    Similar works