6,774 research outputs found

    Fluid passage-time calculation in large Markov models

    Get PDF
    Recent developments in the analysis of large Markov models facilitate the fast approximation of transient characteristics of the underlying stochastic process. So-called fluid analysis makes it possible to consider previously intractable models whose underlying discrete state space grows exponentially as model components are added. In this work, we show how fluid approximation techniques may be used to extract passage-time measures from performance models. We focus on two types of passage measure: passage-times involving individual components; as well as passage-times which capture the time taken for a population of components to evolve. Specifically, we show that for models of sufficient scale, passage-time distributions can be well approximated by a deterministic fluid-derived passage-time measure. Where models are not of sufficient scale, we are able to generate approximate bounds for the entire cumulative distribution function of these passage-time random variables, using moment-based techniques. Finally, we show that for some passage-time measures involving individual components the cumulative distribution function can be directly approximated by fluid techniques

    The Mean Drift: Tailoring the Mean Field Theory of Markov Processes for Real-World Applications

    Full text link
    The statement of the mean field approximation theorem in the mean field theory of Markov processes particularly targets the behaviour of population processes with an unbounded number of agents. However, in most real-world engineering applications one faces the problem of analysing middle-sized systems in which the number of agents is bounded. In this paper we build on previous work in this area and introduce the mean drift. We present the concept of population processes and the conditions under which the approximation theorems apply, and then show how the mean drift is derived through a systematic application of the propagation of chaos. We then use the mean drift to construct a new set of ordinary differential equations which address the analysis of population processes with an arbitrary size

    Time Discrete Approximation of Weak Solutions for Stochastic Equations of Geophysical Fluid Dynamics and Applications

    Full text link
    As a first step towards the numerical analysis of the stochastic primitive equations of the atmosphere and oceans, we study their time discretization by an implicit Euler scheme. From deterministic viewpoint the 3D Primitive Equations are studied with physically realistic boundary conditions. From probabilistic viewpoint we consider a wide class of nonlinear, state dependent, white noise forcings. The proof of convergence of the Euler scheme covers the equations for the oceans, atmosphere, coupled oceanic-atmospheric system and other geophysical equations. We obtain the existence of solutions weak in PDE and probabilistic sense, a result which is new by itself to the best of our knowledge

    Moment Closure - A Brief Review

    Full text link
    Moment closure methods appear in myriad scientific disciplines in the modelling of complex systems. The goal is to achieve a closed form of a large, usually even infinite, set of coupled differential (or difference) equations. Each equation describes the evolution of one "moment", a suitable coarse-grained quantity computable from the full state space. If the system is too large for analytical and/or numerical methods, then one aims to reduce it by finding a moment closure relation expressing "higher-order moments" in terms of "lower-order moments". In this brief review, we focus on highlighting how moment closure methods occur in different contexts. We also conjecture via a geometric explanation why it has been difficult to rigorously justify many moment closure approximations although they work very well in practice.Comment: short survey paper (max 20 pages) for a broad audience in mathematics, physics, chemistry and quantitative biolog
    corecore