2,094 research outputs found

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    Seeing the Unseen: The REVEAL protocol to expose the wireless Man-in-the-Middle

    Full text link
    A Man-in-the-Middle (MiM) can collect over-the-air packets whether from a mobile or a base station, process them, possibly modify them, and forward them to the intended receiver. This paper exhibits the REVEAL protocol that can detect a MiM, whether it has half duplex capability, full duplex capability, or double full duplex capability. Protocol is based on synchronizing clocks between the mobile and the base station, with the MiM being detected if it interferes in the synchronization process. Once synchronized, the REVEAL protocol creates a sequence of challenge packets where the transmission times of the packets, their durations, and their frequencies, are chosen to create conflicts at the MiM, and make it impossible for the MiM to function. We implement the REVEAL protocol for detecting a MiM in 4G technology. We instantiate a MiM between the 4G/5G base station and a mobile, and exhibit the successful detection mechanisms. With the shared source code, our work can be reproduced using open software defined cellular networks with off-the-shelf device

    Detecting and Locating Man-in-the-Middle Attacks in Fixed Wireless Networks

    Get PDF
    We propose a novel method to detect and locate a Man-in-the-Middle attack in a fixed wireless network by analyzing round-trip time and measured received signal strength from fixed access points. The proposed method was implemented as a client-side application that establishes a baseline for measured round trip time (RTTs) and received signal strength (RSS) under no-threat scenarios and applies statistical measures on the measured RTT and RSS to detect and locate Man-in-the-Middle attacks.We show empirically that the presence of a Man-in-the-Middle attack incurs a significantly longer delay and larger standard deviation in measured RTT compared to that measured without a Man-in-the-Middle attack.We evaluated three machine learning algorithms on the measured RSS dataset to estimate the location of a Man-in-the-Middle attacker.Experimental results show that the proposed method can effectively detect and locate a Man-in-the-Middle attack and achieves a mean location estimation error of 0.8 meters in an indoor densely populated metropolitanenvironment.</p

    A Survey of Clock Synchronization Over Packet-Switched Networks

    Get PDF
    Clock synchronization is a prerequisite for the realization of emerging applications in various domains such as industrial automation and the intelligent power grid. This paper surveys the standardized protocols and technologies for providing synchronization of devices connected by packet-switched networks. A review of synchronization impairments and the state-of-the-art mechanisms to improve the synchronization accuracy is then presented. Providing microsecond to sub-microsecond synchronization accuracy under the presence of asymmetric delays in a cost-effective manner is a challenging problem, and still an open issue in many application scenarios. Further, security is of significant importance for systems where timing is critical. The security threats and solutions to protect exchanged synchronization messages are also discussed

    Security performance and protocol consideration in optical communication system with optical layer security enabled by optical coding techniques

    Get PDF
    With the fast development of communication systems, network security issues have more and more impact on daily life. It is essential to construct a high degree of optical layer security to resolve the security problem once and for all. Three different techniques which can provide optical layer security are introduced and compared. Optical chaos can be used for fast random number generation. Quantum cryptography is the most promising technique for key distribution. And the optical coding techniques can be deployed to encrypt the modulated signal in the optical layer. A mathematical equation has been derived from information theory to evaluate the information-theoretic security level of the wiretap channel in optical coding schemes. And the merits and limitation of two coherent optical coding schemes, temporal phase coding and spectral phase coding, have been analysed. The security scheme based on a reconfigurable optical coding device has been introduced, and the corresponding security protocol has been developed. By moving the encryption operation from the electronic layer to the optical layer, the modulated signals become opaque to the unauthorised users. Optical code distribution and authentication is the one of the major challenges for our proposed scheme. In our proposed protocol, both of the operations are covered and defined in detail. As a preliminary draft of the optical code security protocol, it could be a useful guidance for further research

    Wireless Sensor Data Transport, Aggregation and Security

    Get PDF
    abstract: Wireless sensor networks (WSN) and the communication and the security therein have been gaining further prominence in the tech-industry recently, with the emergence of the so called Internet of Things (IoT). The steps from acquiring data and making a reactive decision base on the acquired sensor measurements are complex and requires careful execution of several steps. In many of these steps there are still technological gaps to fill that are due to the fact that several primitives that are desirable in a sensor network environment are bolt on the networks as application layer functionalities, rather than built in them. For several important functionalities that are at the core of IoT architectures we have developed a solution that is analyzed and discussed in the following chapters. The chain of steps from the acquisition of sensor samples until these samples reach a control center or the cloud where the data analytics are performed, starts with the acquisition of the sensor measurements at the correct time and, importantly, synchronously among all sensors deployed. This synchronization has to be network wide, including both the wired core network as well as the wireless edge devices. This thesis studies a decentralized and lightweight solution to synchronize and schedule IoT devices over wireless and wired networks adaptively, with very simple local signaling. Furthermore, measurement results have to be transported and aggregated over the same interface, requiring clever coordination among all nodes, as network resources are shared, keeping scalability and fail-safe operation in mind. Furthermore ensuring the integrity of measurements is a complicated task. On the one hand Cryptography can shield the network from outside attackers and therefore is the first step to take, but due to the volume of sensors must rely on an automated key distribution mechanism. On the other hand cryptography does not protect against exposed keys or inside attackers. One however can exploit statistical properties to detect and identify nodes that send false information and exclude these attacker nodes from the network to avoid data manipulation. Furthermore, if data is supplied by a third party, one can apply automated trust metric for each individual data source to define which data to accept and consider for mentioned statistical tests in the first place. Monitoring the cyber and physical activities of an IoT infrastructure in concert is another topic that is investigated in this thesis.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodesïżœ resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks
    • 

    corecore