16 research outputs found

    Lagrange Coded Computing: Optimal Design for Resiliency, Security and Privacy

    Get PDF
    We consider a scenario involving computations over a massive dataset stored distributedly across multiple workers, which is at the core of distributed learning algorithms. We propose Lagrange Coded Computing (LCC), a new framework to simultaneously provide (1) resiliency against stragglers that may prolong computations; (2) security against Byzantine (or malicious) workers that deliberately modify the computation for their benefit; and (3) (information-theoretic) privacy of the dataset amidst possible collusion of workers. LCC, which leverages the well-known Lagrange polynomial to create computation redundancy in a novel coded form across workers, can be applied to any computation scenario in which the function of interest is an arbitrary multivariate polynomial of the input dataset, hence covering many computations of interest in machine learning. LCC significantly generalizes prior works to go beyond linear computations. It also enables secure and private computing in distributed settings, improving the computation and communication efficiency of the state-of-the-art. Furthermore, we prove the optimality of LCC by showing that it achieves the optimal tradeoff between resiliency, security, and privacy, i.e., in terms of tolerating the maximum number of stragglers and adversaries, and providing data privacy against the maximum number of colluding workers. Finally, we show via experiments on Amazon EC2 that LCC speeds up the conventional uncoded implementation of distributed least-squares linear regression by up to 13.43×13.43\times, and also achieves a 2.36×2.36\times-12.65×12.65\times speedup over the state-of-the-art straggler mitigation strategies

    Lagrange Coded Computing: Optimal Design for Resiliency, Security, and Privacy

    Get PDF
    We consider a scenario involving computations over a massive dataset stored distributedly across multiple workers, which is at the core of distributed learning algorithms. We propose Lagrange Coded Computing (LCC), a new framework to simultaneously provide (1) resiliency against stragglers that may prolong computations; (2) security against Byzantine (or malicious) workers that deliberately modify the computation for their benefit; and (3) (information-theoretic) privacy of the dataset amidst possible collusion of workers. LCC, which leverages the well-known Lagrange polynomial to create computation redundancy in a novel coded form across workers, can be applied to any computation scenario in which the function of interest is an arbitrary multivariate polynomial of the input dataset, hence covering many computations of interest in machine learning. LCC significantly generalizes prior works to go beyond linear computations. It also enables secure and private computing in distributed settings, improving the computation and communication efficiency of the state-of-the-art. Furthermore, we prove the optimality of LCC by showing that it achieves the optimal tradeoff between resiliency, security, and privacy, i.e., in terms of tolerating the maximum number of stragglers and adversaries, and providing data privacy against the maximum number of colluding workers. Finally, we show via experiments on Amazon EC2 that LCC speeds up the conventional uncoded implementation of distributed least-squares linear regression by up to 13.43×, and also achieves a 2.36×-12.65× speedup over the state-of-the-art straggler mitigation strategies

    GCSA Codes with Noise Alignment for Secure Coded Multi-Party Batch Matrix Multiplication

    Full text link
    A secure multi-party batch matrix multiplication problem (SMBMM) is considered, where the goal is to allow a master to efficiently compute the pairwise products of two batches of massive matrices, by distributing the computation across S servers. Any X colluding servers gain no information about the input, and the master gains no additional information about the input beyond the product. A solution called Generalized Cross Subspace Alignment codes with Noise Alignment (GCSA-NA) is proposed in this work, based on cross-subspace alignment codes. The state of art solution to SMBMM is a coding scheme called polynomial sharing (PS) that was proposed by Nodehi and Maddah-Ali. GCSA-NA outperforms PS codes in several key aspects - more efficient and secure inter-server communication, lower latency, flexible inter-server network topology, efficient batch processing, and tolerance to stragglers. The idea of noise alignment can also be combined with N-source Cross Subspace Alignment (N-CSA) codes and fast matrix multiplication algorithms like Strassen's construction. Moreover, noise alignment can be applied to symmetric secure private information retrieval to achieve the asymptotic capacity

    A Unified Coded Deep Neural Network Training Strategy Based on Generalized PolyDot Codes for Matrix Multiplication

    Full text link
    This paper has two contributions. First, we propose a novel coded matrix multiplication technique called Generalized PolyDot codes that advances on existing methods for coded matrix multiplication under storage and communication constraints. This technique uses "garbage alignment," i.e., aligning computations in coded computing that are not a part of the desired output. Generalized PolyDot codes bridge between Polynomial codes and MatDot codes, trading off between recovery threshold and communication costs. Second, we demonstrate that Generalized PolyDot can be used for training large Deep Neural Networks (DNNs) on unreliable nodes prone to soft-errors. This requires us to address three additional challenges: (i) prohibitively large overhead of coding the weight matrices in each layer of the DNN at each iteration; (ii) nonlinear operations during training, which are incompatible with linear coding; and (iii) not assuming presence of an error-free master node, requiring us to architect a fully decentralized implementation without any "single point of failure." We allow all primary DNN training steps, namely, matrix multiplication, nonlinear activation, Hadamard product, and update steps as well as the encoding/decoding to be error-prone. We consider the case of mini-batch size B=1B=1, as well as B>1B>1, leveraging coded matrix-vector products, and matrix-matrix products respectively. The problem of DNN training under soft-errors also motivates an interesting, probabilistic error model under which a real number (P,Q)(P,Q) MDS code is shown to correct P−Q−1P-Q-1 errors with probability 11 as compared to ⌊P−Q2⌋\lfloor \frac{P-Q}{2} \rfloor for the more conventional, adversarial error model. We also demonstrate that our proposed strategy can provide unbounded gains in error tolerance over a competing replication strategy and a preliminary MDS-code-based strategy for both these error models.Comment: Presented in part at the IEEE International Symposium on Information Theory 2018 (Submission Date: Jan 12 2018); Currently under review at the IEEE Transactions on Information Theor
    corecore