631 research outputs found

    Fundamental Limits of Caching in Wireless D2D Networks

    Full text link
    We consider a wireless Device-to-Device (D2D) network where communication is restricted to be single-hop. Users make arbitrary requests from a finite library of files and have pre-cached information on their devices, subject to a per-node storage capacity constraint. A similar problem has already been considered in an ``infrastructure'' setting, where all users receive a common multicast (coded) message from a single omniscient server (e.g., a base station having all the files in the library) through a shared bottleneck link. In this work, we consider a D2D ``infrastructure-less'' version of the problem. We propose a caching strategy based on deterministic assignment of subpackets of the library files, and a coded delivery strategy where the users send linearly coded messages to each other in order to collectively satisfy their demands. We also consider a random caching strategy, which is more suitable to a fully decentralized implementation. Under certain conditions, both approaches can achieve the information theoretic outer bound within a constant multiplicative factor. In our previous work, we showed that a caching D2D wireless network with one-hop communication, random caching, and uncoded delivery, achieves the same throughput scaling law of the infrastructure-based coded multicasting scheme, in the regime of large number of users and files in the library. This shows that the spatial reuse gain of the D2D network is order-equivalent to the coded multicasting gain of single base station transmission. It is therefore natural to ask whether these two gains are cumulative, i.e.,if a D2D network with both local communication (spatial reuse) and coded multicasting can provide an improved scaling law. Somewhat counterintuitively, we show that these gains do not cumulate (in terms of throughput scaling law).Comment: 45 pages, 5 figures, Submitted to IEEE Transactions on Information Theory, This is the extended version of the conference (ITW) paper arXiv:1304.585

    Fundamental Limits of Distributed Caching in D2D Wireless Networks

    Full text link
    We consider a wireless Device-to-Device (D2D) network where communication is restricted to be single-hop, users make arbitrary requests from a finite library of possible files and user devices cache information in the form of linear combinations of packets from the files in the library (coded caching). We consider the combined effect of coding in the caching and delivery phases, achieving "coded multicast gain", and of spatial reuse due to local short-range D2D communication. Somewhat counterintuitively, we show that the coded multicast gain and the spatial reuse gain do not cumulate, in terms of the throughput scaling laws. In particular, the spatial reuse gain shown in our previous work on uncoded random caching and the coded multicast gain shown in this paper yield the same scaling laws behavior, but no further scaling law gain can be achieved by using both coded caching and D2D spatial reuse.Comment: 5 pages, 3 figures, submitted to ITW 201

    Capacity of Cellular Networks with Femtocache

    Full text link
    The capacity of next generation of cellular networks using femtocaches is studied when multihop communications and decentralized cache placement are considered. We show that the storage capability of future network User Terminals (UT) can be effectively used to increase the capacity in random decentralized uncoded caching. We further propose a random decentralized coded caching scheme which achieves higher capacity results than the random decentralized uncoded caching. The result shows that coded caching which is suitable for systems with limited storage capabilities can improve the capacity of cellular networks by a factor of log(n) where n is the number of nodes served by the femtocache.Comment: 6 pages, 2 figures, presented at Infocom Workshops on 5G and beyond, San Francisco, CA, April 201

    How Much Can D2D Communication Reduce Content Delivery Latency in Fog Networks with Edge Caching?

    Get PDF
    A Fog-Radio Access Network (F-RAN) is studied in which cache-enabled Edge Nodes (ENs) with dedicated fronthaul connections to the cloud aim at delivering contents to mobile users. Using an information-theoretic approach, this work tackles the problem of quantifying the potential latency reduction that can be obtained by enabling Device-to-Device (D2D) communication over out-of-band broadcast links. Following prior work, the Normalized Delivery Time (NDT) --- a metric that captures the high signal-to-noise ratio worst-case latency --- is adopted as the performance criterion of interest. Joint edge caching, downlink transmission, and D2D communication policies based on compress-and-forward are proposed that are shown to be information-theoretically optimal to within a constant multiplicative factor of two for all values of the problem parameters, and to achieve the minimum NDT for a number of special cases. The analysis provides insights on the role of D2D cooperation in improving the delivery latency.Comment: Submitted to the IEEE Transactions on Communication

    Centralized Coded Caching with User Cooperation

    Full text link
    In this paper, we consider the coded-caching broadcast network with user cooperation, where a server connects with multiple users and the users can cooperate with each other through a cooperation network. We propose a centralized coded caching scheme based on a new deterministic placement strategy and a parallel delivery strategy. It is shown that the new scheme optimally allocate the communication loads on the server and users, obtaining cooperation gain and parallel gain that greatly reduces the transmission delay. Furthermore, we show that the number of users who parallelly send information should decrease when the users' caching size increases. In other words, letting more users parallelly send information could be harmful. Finally, we derive a constant multiplicative gap between the lower bound and upper bound on the transmission delay, which proves that our scheme is order optimal.Comment: 9 pages, submitted to ITW201
    • …
    corecore