6 research outputs found

    Joint velocity redistribution for fault tolerant manipulators

    Full text link
    If the end-effector of a robotic manipulator moves on a specified trajectory, then for the fault tolerant operation, it is required that the end-effector continues the trajectory with a minimum velocity jump when a fault occurs within a joint. This problem is addressed in the paper. A way to tolerate the fault is to find new joint velocities for the faulty manipulator in which results into the same end-effector velocity provided by the healthy manipulator. The aim of this study is to find a strategy which optimally redistributes the joint velocities for the remained healthy joints of the manipulators. The optimality is defined by the minimum end-effector velocity jump. A solution of the problem is presented and it is applied to a robotics manipulator. Then through a case study and a simulation study it is validated. The paper shows that if would be possible the joint velocity redistribution results into a zero velocity jump

    Fault tolerance force for redundant manipulators

    Full text link
    Fault tolerant manipulators maintain their trajectory even if their joint/s fails. Assuming that the manipulator is fault tolerant on its trajectory, fault tolerant compliance manipulators provide required force at their end-effector even when a joint fails. To achieve this, the contributions of the faulty joints for the force of the end-effector are required to be mapped into the proper compensating joint torques of the healthy joints to maintain the force. This paper addresses the optimal mapping to minimize the force jump due to a fault, which is the maximum effort to maintain the force when a fault occurs. The paper studies the locked joint fault/s of the redundant manipulators and it relates the force jump at the end-effector to the faults within the joints. Adding on a previous study to maintain the trajectory, in here the objective is to providing fault tolerant force at the end-effector of the redundant manipulators. This optimal mapping with minimum force jump is presented using matrix perturbation model. And the force jump is calculated through this model for single and multiple joints fault. The proposed optimal mapping is used in different fault scenarios for a 5-DOF manipulator; also it is deployed to compensate the force at the end-effector for the 5-DOF manipulator through simulation study and the results are presented

    TOWARDS A NOVEL RESILIENT ROBOTIC SYSTEM

    Get PDF
    Resilient robotic systems are a kind of robotic system that is able to recover their original function after partial damage of the system. This is achieved by making changes on the partially damaged robot. In this dissertation study, a general robot, which makes sense by including active joints, passive joints, passive links, and passive adjustable links, was proposed in order to explore its resilience. Note that such a robot is also called an under-actuated robot. This dissertation presents the following studies. First, a novel architecture of robots was proposed, which is characterized as under-actuated robot. The architecture enables three types of recovery strategy, namely (1) change of the robot behavior, (2) change of the robot state, and (3) change of the robot configuration. Second, a novel docking system was developed, which allows for the realization of real-time assembly and disassembly and passive joint and adjustable passive link, and this thus enables the realization of the proposed architecture. Third, an example prototype system was built to experiment the effectiveness of the proposed architecture and to demonstrate the resilient behavior of the robot. Fourth, a novel method for robot configuration synthesis was developed, which is based on the genetic algorithm (GA), to determine the goal configuration of a partially damaged robot, at which the robot can still perform its original function. The novelty of the method lies in the integration of both discrete variables such as the number of modules, type of modules, and assembly patterns between modules and the continuous variables such as the length of modules and initial location of the robot. Fifth, a GA-based method for robot reconfiguration planning and scheduling was developed to actually change the robot from its initial configuration to the goal configuration with a minimum effort (time and energy). Two conclusions can be drawn from the above studies. First, the under-actuated robotic architecture can build a cost effective robot that can achieve the highest degree of resilience. Second, the design of the under-actuated resilient robot with the proposed docking system not only reduces the cost but also overcomes the two common actuator failures: (i) an active joint is unlocked (thus becoming a passive joint) and (ii) an active joint is locked (thus becoming an adjustable link). There are several contributions made by this dissertation to the field of robotics. The first is the finding that an under-actuated robot can be made more resilient. In the field of robotics, the concept of the under-actuated robot is available, but it has not been considered for reconfiguration (in literature, the reconfiguration is mostly about fully actuated robots). The second is the elaboration on the concept of reconfiguration planning, scheduling, and manipulation/control. In the literature of robotics, only the concept of reconfiguration planning is precisely given but not for reconfiguration scheduling. The third is the development of the model along with its algorithm for synthesis of the goal reconfiguration, reconfiguration planning, and scheduling. The application of the proposed under-actuated resilient robot lies in the operations in unknown or dangerous environments, for example, in rescue missions and space explorations. In these applications, replacement or repair of a damaged robot is impossible or cost-prohibited

    Kinematic design and motion planning of fault tolerant robots with locked joint failures

    Get PDF
    2019 Summer.Includes bibliographical references.The problem of kinematic design and motion planning of fault tolerant robots with locked joint failure is studied in this work. In kinematic design, the problem of designing optimally fault tolerant robots for equal joint failure probabilities is first explored. A measure of local fault tolerance for equal joint failure probabilities has previously been defined based on the properties of the singular values of the Jacobian matrix. Based on this measure, one can determine a Jacobian that is optimal. Because these measures are solely based on the singular values of the Jacobian, permutation of the columns does not affect the optimality. Therefore, when one generates a kinematic robot design from this optimal Jacobian, there will be 7! robot designs with the same locally optimal fault tolerant property. This work shows how to analyze and organize the kinematic structure of these 7! designs in terms of their Denavit and Hartenberg (DH) parameters. Furthermore, global fault tolerant measures are defined in order to evaluate the different designs. It is shown that robot designs that are very similar in terms of DH parameters, e.g., robots generated from Jacobians where the columns are in reverse order, can have very different global properties. Finally, a computationally efficient approach to calculate the global pre- and post-failure dexterity measures is presented and used to identify two Pareto optimal robot designs. The workspaces for these optimal designs are also shown. Then, the problem of designing optimally fault tolerant robots for different joint failure probabilities is considered. A measure of fault tolerance for different joint failure probabilities is defined based on the properties of the singular values of the Jacobian after failures. Using this measure, methods to design optimally fault tolerant robots for an arbitrary set of joint failure probabilities and multiple cases of joint failure probabilities are introduced separately. Given an arbitrary set of joint failure probabilities, the optimal null space that optimizes the fault tolerant measure is derived, and the associated isotropic Jacobians are constructed. The kinematic parameters of the optimally fault tolerant robots are then generated from these Jacobians. One special case, i.e., how to construct the optimal Jacobian of spatial 7R robots for both positioning and orienting is further discussed. For multiple cases of joint failure probabilities, the optimal robot is designed through optimizing the sum of the fault tolerant measures for all the possible joint failure probabilities. This technique is illustrated on planar 3R robots, and it is shown that there exists a family of optimal robots. After the optimally fault tolerant robots are designed, the problem of planning the optimal trajectory with minimum probability of task failure for a set of point-to-point tasks, after experiencing locked joint failures, is studied. The proposed approach first develops a method to calculate the probability of task failure for an arbitrary trajectory, where the trajectory is divided into small segments, and the probability of task failure of each segment is calculated based on its failure scenarios. Then, a motion planning algorithm is proposed to find the optimal trajectory with minimum probability of task failure. There are two cases. The trajectory in the first case is the optimal trajectory from the start configuration to the intersection of the bounding boxes of all the task points. In the other case, all the configurations along the self-motion manifold of task point 1 need to be checked, and the optimal trajectory is the trajectory with minimum probability of task failure among them. The proposed approach is demonstrated on planar 2R redundant robots, illustrating the effectiveness of the algorithm
    corecore