59,501 research outputs found
Recommended from our members
Bacteria Use Type IV Pili to Walk Upright and Detach from Surfaces
1. Department of Bioengineering, California Nano Systems Institute,University of California, Los Angeles, CA 90024, USA.
2. Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
3. Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, IL 61801, USA.
4. Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.Bacterial biofilms are structured multicellular communities involved in a broad range of infections. Knowing how free-swimming bacteria adapt their motility mechanisms near surfaces is crucial for understanding the transition between planktonic and biofilm phenotypes. By translating microscopy movies into searchable databases of bacterial behavior, we identified fundamental type IV pili–driven mechanisms for Pseudomonas aeruginosa surface motility involved in distinct foraging strategies. Bacteria stood upright and “walked” with trajectories optimized for two-dimensional surface exploration. Vertical orientation facilitated surface
detachment and could influence biofilm morphology.Center for Nonlinear Dynamic
Kinetic Modeling and Numerical Simulation as Tools to Scale Microalgae Cell Membrane Permeabilization by Means of Pulsed Electric Fields (PEF) From Lab to Pilot Plants
Pulsed Electric Fields (PEF) is a promising technology for the gentle and energy efficient disruption of microalgae cells such as Chlorella vulgaris. The technology is based on the exposure of cells to a high voltage electric field, which causes the permeabilization of the cell membrane. Due to the dependency of the effective treatment conditions on the specific design of the treatment chamber, it is difficult to compare data obtained in different chambers or at different scales, e.g., lab or pilot scale. This problem can be overcome by the help of numerical simulation since it enables the accessibility to the local treatment conditions (electric field strength, temperature, flow field) inside a treatment chamber. To date, no kinetic models for the cell membrane permeabilization of microalgae are available what makes it difficult to decide if and in what extent local treatment conditions have an impact on the permeabilization. Therefore, a kinetic model for the perforation of microalgae cells of the species Chlorella vulgaris was developed in the present work. The model describes the fraction of perforated cells as a function of the electric field strength, the temperature and the treatment time by using data which were obtained in a milliliter scale batchwise treatment chamber. Thereafter, the model was implemented in a CFD simulation of a pilot-scale continuous treatment chamber with colinear electrode arrangement. The numerical results were compared to experimental measurements of cell permeabilization in a similar continuous treatment chamber. The predicted values and the experimental data agree reasonably well what demonstrates the validity of the proposed model. Therefore, it can be applied to any possible treatment chamber geometry and can be used as a tool for scaling cell permeabilization of microalgae by means of PEF from lab to pilot scale. The present work provides the first contribution showing the applicability of kinetic modeling and numerical simulation for designing PEF processes for the purpose of biorefining microalgae biomass. This can help to develop new processes and to reduce the costs for the development of new treatment chamber designs.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli
Site investigation for the effects of vegetation on ground stability
The procedure for geotechnical site investigation is well established but little attention is currently given to investigating the potential of vegetation to assist with ground stability. This paper describes how routine investigation procedures may be adapted to consider the effects of the vegetation. It is recommended that the major part of the vegetation investigation is carried out, at relatively low cost, during the preliminary (desk) study phase of the investigation when there is maximum flexibility to take account of findings in the proposed design and construction. The techniques available for investigation of the effects of vegetation are reviewed and references provided for further consideration. As for general geotechnical investigation work, it is important that a balance of effort is maintained in the vegetation investigation between (a) site characterisation (defining and identifying the existing and proposed vegetation to suit the site and ground conditions), (b) testing (in-situ and laboratory testing of the vegetation and root systems to provide design parameters) and (c) modelling (to analyse the vegetation effects)
Soil and water bioengineering: practice and research needs for reconciling natural hazard control and ecological restoration
Soil and water bioengineering is a technology that encourages scientists and practitioners to combine their knowledge and skills in the management of ecosystems with a common goal to maximize benefits to both man and the natural environment. It involves techniques that use plants as living building materials, for: (i) natural hazard control (e.g., soil erosion, torrential floods and landslides) and (ii) ecological restoration or nature-based re-introduction of species on degraded lands, river embankments, and disturbed environments. For a bioengineering project to be successful, engineers are required to highlight all the potential benefits and ecosystem services by documenting the technical, ecological, economic and social values. The novel approaches used by bioengineers raise questions for researchers and necessitate innovation from practitioners to design bioengineering concepts and techniques. Our objective in this paper, therefore, is to highlight the practice and research needs in soil and water bioengineering for reconciling natural hazard control and ecological restoration. Firstly, we review the definition and development of bioengineering technology, while stressing issues concerning the design, implementation, and monitoring of bioengineering actions. Secondly, we highlight the need to reconcile natural hazard control and ecological restoration by posing novel practice and research questions
Characterizing steady states of genome-scale metabolic networks in continuous cell cultures
We present a model for continuous cell culture coupling intra-cellular
metabolism to extracellular variables describing the state of the bioreactor,
taking into account the growth capacity of the cell and the impact of toxic
byproduct accumulation. We provide a method to determine the steady states of
this system that is tractable for metabolic networks of arbitrary complexity.
We demonstrate our approach in a toy model first, and then in a genome-scale
metabolic network of the Chinese hamster ovary cell line, obtaining results
that are in qualitative agreement with experimental observations. More
importantly, we derive a number of consequences from the model that are
independent of parameter values. First, that the ratio between cell density and
dilution rate is an ideal control parameter to fix a steady state with desired
metabolic properties invariant across perfusion systems. This conclusion is
robust even in the presence of multi-stability, which is explained in our model
by the negative feedback loop on cell growth due to toxic byproduct
accumulation. Moreover, a complex landscape of steady states in continuous cell
culture emerges from our simulations, including multiple metabolic switches,
which also explain why cell-line and media benchmarks carried out in batch
culture cannot be extrapolated to perfusion. On the other hand, we predict
invariance laws between continuous cell cultures with different parameters. A
practical consequence is that the chemostat is an ideal experimental model for
large-scale high-density perfusion cultures, where the complex landscape of
metabolic transitions is faithfully reproduced. Thus, in order to actually
reflect the expected behavior in perfusion, performance benchmarks of
cell-lines and culture media should be carried out in a chemostat
Looking into the Eye with REAP
Keratoprosthesis is an artificial cornea that is surgically implanted in the eye to replace damaged cornea, correcting corneal blindness. Keratoprosthesis offers a unique solution that eliminates the possible rejection of donor cornea, a common problem with keratoplasty. The design used currently for this procedure is Boston Keratoprosthesis (KPro), but it has some flaws. Boston KPro needs donor cornea for its design, which is in high demand and short supply. The design is also open to the environment, creating a pathway for bacteria to enter the eye and cause permanent damage. My research through the Research Experience and Apprenticeship Program (REAP) at the University of New Hampshire involved creating a new artificial cornea that fixes both of these issues. I started fabricating a cornea out of silk fibroin and gelatin, called a hydrogel, to replace the need for donor cornea. These hydrogels were tested using a rheometer and a scanning electron microscope for the stiffness, mechanical strength, and porousness of the structure, as these qualities have to be similar to a real cornea. It was a success. We created hydrogels that replicated the characteristics of a human cornea and fixed the issues Boston KPro has. REAP was a great opportunity to explore my interests in bioengineering while potentially changing peoples’ lives
Lung bioengineering: physical stimuli and stem/progenitor cell biology interplay towards biofabricating a functional organ
A current approach to obtain bioengineered lungs as a future alternative for transplantation is based on seeding stem cells on decellularized lung scaffolds. A fundamental question to be solved in this approach is how to drive stem cell differentiation onto the different lung cell phenotypes. Whereas the use of soluble factors as agents to modulate the fate of stem cells was established from an early stage of the research with this type of cells, it took longer to recognize that the physical microenvironment locally sensed by stem cells (e.g. substrate stiffness, 3D architecture, cyclic stretch, shear stress, air-liquid interface, oxygenation gradient) also contributes to their differentiation. The potential role played by physical stimuli would be particularly relevant in lung bioengineering since cells within the organ are physiologically subjected to two main stimuli required to facilitate efficient gas exchange: air ventilation and blood perfusion across the organ. The present review focuses on describing how the cell mechanical microenvironment can modulate stem cell differentiation and how these stimuli could be incorporated into lung bioreactors for optimizing organ bioengineering
Hybrid bioprinting of chondrogenically induced human mesenchymal stem cell spheroids
To date, the treatment of articular cartilage lesions remains challenging. A promising strategy for the development of new regenerative therapies is hybrid bioprinting, combining the principles of developmental biology, biomaterial science, and 3D bioprinting. In this approach, scaffold-free cartilage microtissues with small diameters are used as building blocks, combined with a photo-crosslinkable hydrogel and subsequently bioprinted. Spheroids of human bone marrow-derived mesenchymal stem cells (hBM-MSC) are created using a high-throughput microwell system and chondrogenic differentiation is induced during 42 days by applying chondrogenic culture medium and low oxygen tension (5%). Stable and homogeneous cartilage spheroids with a mean diameter of 116 +/- 2.80 mu m, which is compatible with bioprinting, were created after 14 days of culture and a glycosaminoglycans (GAG)- and collagen II-positive extracellular matrix (ECM) was observed. Spheroids were able to assemble at random into a macrotissue, driven by developmental biology tissue fusion processes, and after 72 h of culture, a compact macrotissue was formed. In a directed assembly approach, spheroids were assembled with high spatial control using the bio-ink based extrusion bioprinting approach. Therefore, 14-day spheroids were combined with a photo-crosslinkable methacrylamide-modified gelatin (gelMA) as viscous printing medium to ensure shape fidelity of the printed construct. The photo-initiators Irgacure 2959 and Li-TPO-L were evaluated by assessing their effect on bio-ink properties and the chondrogenic phenotype. The encapsulation in gelMA resulted in further chondrogenic maturation observed by an increased production of GAG and a reduction of collagen I. Moreover, the use of Li-TPO-L lead to constructs with lower stiffness which induced a decrease of collagen I and an increase in GAG and collagen II production. After 3D bioprinting, spheroids remained viable and the cartilage phenotype was maintained. Our findings demonstrate that hBM-MSC spheroids are able to differentiate into cartilage microtissues and display a geometry compatible with 3D bioprinting. Furthermore, for hybrid bioprinting of these spheroids, gelMA is a promising material as it exhibits favorable properties in terms of printability and it supports the viability and chondrogenic phenotype of hBM-MSC microtissues. Moreover, it was shown that a lower hydrogel stiffness enhances further chondrogenic maturation after bioprinting
The chondro-osseous continuum: is it possible to unlock the potential assigned within?
Endochondral ossification (EO), by which long bones of the axial skeleton form, is a tightly regulated process involving chondrocyte maturation with successive stages of proliferation, maturation, and hypertrophy, accompanied by cartilage matrix synthesis, calcification, and angiogenesis, followed by osteoblast-mediated ossification. This developmental sequence reappears during fracture repair and in osteoarthritic etiopathology. These similarities suggest that EO, and the cells involved, are of great clinical importance for bone regeneration as it could provide novel targeted approaches to increase specific signaling to promote fracture healing, and if regulated appropriately in the treatment of osteoarthritis. The long-held accepted dogma states that hypertrophic chondrocytes are terminally differentiated and will eventually undergo apoptosis. In this mini review, we will explore recent evidence from experiments that revisit the idea that hypertrophic chondrocytes have pluripotent capacity and may instead transdifferentiate into a specific sub-population of osteoblast cells. There are multiple lines of evidence, including our own, showing that local, selective alterations in cartilage extracellular matrix (ECM) remodeling also indelibly alter bone quality. This would be consistent with the hypothesis that osteoblast behavior in long bones is regulated by a combination of their lineage origins and the epigenetic effects of chondrocyte-derived ECM which they encounter during their recruitment. Further exploration of these processes could help to unlock potential novel targets for bone repair and regeneration and in the treatment of osteoarthritis
- …
