359,063 research outputs found
The d(10) route to dye-sensitized solar cells: step-wise assembly of zinc(II) photosensitizers on TiO2 surfaces
Dye-sensitized solar cells have been assembled using a sequential approach: a TiO2 surface was functionalized with an anchoring ligand, followed by metallation with Zn(OAc)(2) or ZnCl2, and subsequent capping with a chromophore functionalized 2,2`:6`,2 ``-terpyridine; the DSCs exhibit surprisingly good efficiencies confirming the effectiveness of the new strategy for zinc-based DSC fabrication
Functionalized adamantane: fundamental building blocks for nanostructure self-assembly
We report first principles calculations on the electronic and structural
properties of chemically functionalized adamantane molecules, either in
isolated or crystalline forms. Boron and nitrogen functionalized molecules,
aza-, tetra-aza-, bora-, and tetra-bora-adamantane, were found to be very
stable in terms of energetics, consistent with available experimental data.
Additionally, a hypothetical molecular crystal in a zincblende structure,
involving the pair tetra-bora-adamantane and tetra-aza-adamantane, was
investigated. This molecular crystal presented a direct and large electronic
bandgap and a bulk modulus of 20 GPa. The viability of using those
functionalized molecules as fundamental building blocks for nanostructure
self-assembly is discussed
DNA-coated Functional Oil Droplets
Many industrial soft materials often include oil-in-water (O/W) emulsions at
the core of their formulations. By using tuneable interface stabilizing agents,
such emulsions can self-assemble into complex structures. DNA has been used for
decades as a thermoresponsive highly specific binding agent between hard and,
recently, soft colloids. Up until now, emulsion droplets functionalized with
DNA had relatively low coating densities and were expensive to scale up. Here a
general O/W DNA-coating method using functional non-ionic amphiphilic block
copolymers, both diblock and triblock, is presented. The hydrophilic
polyethylene glycol ends of the surfactants are functionalized with azides,
allowing for efficient, dense and controlled coupling of dibenzocyclooctane
functionalized DNA to the polymers through a strain-promoted alkyne-azide click
reaction. The protocol is readily scalable due to the triblock's commercial
availability. Different production methods (ultrasonication, microfluidics and
membrane emulsification) are used with different oils (hexadecane and silicone
oil) to produce functional droplets in various size ranges (sub-micron, and ), showcasing the generality of
the protocol. Thermoreversible sub-micron emulsion gels, hierarchical
"raspberry" droplets and controlled droplet release from a flat DNA-coated
surface are demonstrated. The emulsion stability and polydispersity is
evaluated using dynamic light scattering and optical microscopy. The generality
and simplicity of the method opens up new applications in soft matter and
biotechnological research and industrial advances.Comment: 7 pages, 2 figures, 1 tabl
Deposition and transport of functionalized carbon nanotubes in water-saturated sand columns
Knowledge of the fate and transport of functionalized carbon nanotubes (CNTs) in porous media is crucial to understand their environmental impacts. In this study, laboratory column and modeling experiments were conducted to mechanistically compare the retention and transport of two types of functionalized CNTs (i.e., single-walled nanotubes and multi-walled nanotubes) in acid-cleaned, baked, and natural sand under unfavorable conditions. The CNTs were highly mobile in the acid-cleaned sand columns but showed little transport in the both natural and baked sand columns. In addition, the retention of the CNTs in the both baked and natural sand was strong and almost irreversible even after reverse, high-velocity, or surfactant flow flushing. Both experimental and modeling results showed that pH is one of the factors dominating CNT retention and transport in natural and baked sand. Retention of the functionalized CNTs in the natural and baked sand columns reduced dramatically when the system pH increased. Our results suggest that the retention and transport of the functionalized CNTs in natural sand porous media were mainly controlled by strong surface deposition through the electrostatic and/or hydrogen-bonding attractions between surface function groups of the CNTs and metal oxyhydroxide impurities on the sand surfaces
Exploring the Charge Localization and Band Gap Opening of Borophene: A First-Principles Study
Recently synthesized two-dimensional (2D) boron, borophene, exhibits a novel
metallic behavior rooted in the s-p orbital hybridization, distinctively
different from other 2D materials such as sulfides/selenides and semi-metallic
graphene. This unique feature of borophene implies new routes for charge
delocalization and band gap opening. Herein, using first-principles
calculations, we explore the routes to localize the carriers and open the band
gap of borophene via chemical functionalization, ribbon construction, and
defect engineering. The metallicity of borophene is found to be remarkably
robust against H- and F-functionalization and the presence of vacancies.
Interestingly, a strong odd-even oscillation of the electronic structure with
width is revealed for H-functionalized borophene nanoribbons, while an
ultra-high work function (~ 7.83 eV) is found for the F-functionalized
borophene due to its strong charge transfer to the atomic adsorbates
Interfacial Morphology Addresses Performance of Perovskite Solar Cells Based on Composite Hole Transporting Materials of Functionalized Reduced Graphene Oxide and P3HT
The development of novel hole transporting materials (HTMs) for perovskite solar cells (PSCs) that can enhance device's reproducibility is a largely pursued goal, even to the detriment of a very high efficiency, since it paves the way to an effective industrialization of this technology. In this work, we study the covalent functionalization of reduced graphene oxide (RGO) flakes with different organic functional groups with the aim of increasing the stability and homogeneity of their dispersion within a poly(3-hexylthiophene) (P3HT) HTM. The selected functional groups are indeed those recalling the two characteristic moieties present in P3HT, i.e., the thienyl and alkyl residues. After preparation and characterization of a number of functionalized RGO@P3HT blends, we test the two containing the highest percentage of dispersed RGO as HTMs in PSCs and compare their performance with that of pristine P3HT and of the standard Spiro-OMeTAD HTM. Results reveal the big influence of the morphology adopted by the single RGO flakes contained in the composite HTM in driving the final device performance and allow to distinguish one of these blends as a promising material for the fabrication of highly reproducible PSCs
Indometacin loading and in vitro release properties from novel carbopol coated spherical mesoporous silica nanoparticles
Spherical MCM-41 silica nanosized particles were synthesized and post synthesis modified by 3-aminopropyltriethoxysilane (APTES) in order to prepare amino-functionalized carrier. Both types of silica particleswere loaded with indometacin and further coated with carbopol. The preservation of morphology and pore structure of the particles was observed by XRD, TEM and N2 physisorption. FT-IR spectroscopy revealed the interaction between carboxyl groups of indometacin and the amino groups of the functionalized MCM-41. Amino-functionalization of the carrier resulted in higher degree of indometacin loading in comparison to the parent MCM-41, 39% vs. 30%, respectively. The coating of drug loaded amino-MCM-41 silica particles with carbopol significantly reduced the initial burst release of indometacin. Both silica carriers demonstrated no cytotoxicity on HL-60 (acute myeloid leukemia) and K-562 (chronic myeloid leukemia) cell lines
- …
