1,379 research outputs found

    Preliminary Evidence of Increased Hippocampal Myelin Content in Veterans with Posttraumatic Stress Disorder.

    Get PDF
    Recent findings suggest the formation of myelin in the central nervous system by oligodendrocytes is a continuous process that can be modified with experience. For example, a recent study showed that immobilization stress increased oligodendrogensis in the dentate gyrus of adult rat hippocampus. Because changes in myelination represents an adaptive form of brain plasticity that has a greater reach in the adult brain than other forms of plasticity (e.g., neurogenesis), the objective of this "proof of concept" study was to examine whether there are differences in myelination in the hippocampi of humans with and without post-traumatic stress disorder (PTSD). We used the ratio of T1-weighted/T2-weighted magnetic resonance image (MRI) intensity to estimate the degree of hippocampal myelination in 19 male veterans with PTSD and 19 matched trauma-exposed male veterans without PTSD (mean age: 43 ± 12 years). We found that veterans with PTSD had significantly more hippocampal myelin than trauma-exposed controls. There was also found a positive correlation between estimates of hippocampal myelination and PTSD and depressive symptom severity. To our knowledge, this is the first study to examine hippocampal myelination in humans with PTSD. These results provide preliminary evidence for stress-induced hippocampal myelin formation as a potential mechanism underlying the brain abnormalities associated with vulnerability to stress

    Diffusion Tensor Imaging Predictors of Episodic Memory Decline in Healthy Elders at Genetic Risk for Alzheimer’s Disease

    Get PDF
    Objectives: White matter (WM) integrity within the mesial temporal lobe (MTL) is important for episodic memory (EM) functioning. The current study investigated the ability of diffusion tensor imaging (DTI) in MTL WM tracts to predict 3-year changes in EM performance in healthy elders at disproportionately higher genetic risk for Alzheimer’s disease (AD). Methods: Fifty-one cognitively intact elders (52% with family history (FH) of dementia and 33% possessing an Apolipoprotein E Δ4 allelle) were administered the Rey Auditory Verbal Learning Test (RAVLT) at study entry and at 3-year follow-up. DTI scanning, conducted at study entry, examined fractional anisotropy and mean, radial and axial diffusion within three MTL WM tracts: uncinate fasciculus (UNC), cingulate-hippocampal (CHG), and fornix-stria terminalis (FxS). Correlations were performed between residualized change scores computed from RAVLT trials 1–5, immediate recall, and delayed recall scores and baseline DTI measures; MTL gray matter (GM) and WM volumes; demographics; and AD genetic and metabolic risk factors. Results: Higher MTL mean and axial diffusivity at baseline significantly predicted 3-year changes in EM, whereas baseline MTL GM and WM volumes, FH, and metabolic risk factors did not. Both Δ4 status and DTI correlated with change in immediate recall. Conclusions: Longitudinal EM changes in cognitively intact, healthy elders can be predicted by disruption of the MTL WM microstructure. These results are derived from a sample with a disproportionately higher genetic risk for AD, suggesting that the observed WM disruption in MTL pathways may be related to early neuropathological changes associated with the preclinical stage of AD. (JINS, 2016, 22, 1005–1015

    Limbic Tract Integrity Contributes to Pattern Separation Performance Across the Lifespan.

    Get PDF
    Accurate memory for discrete events is thought to rely on pattern separation to orthogonalize the representations of similar events. Previously, we reported that a behavioral index of pattern separation was correlated with activity in the hippocampus (dentate gyrus, CA3) and with integrity of the perforant path, which provides input to the hippocampus. If the hippocampus operates as part of a broader neural network, however, pattern separation would likely also relate to integrity of limbic tracts (fornix, cingulum bundle, and uncinate fasciculus) that connect the hippocampus to distributed brain regions. In this study, healthy adults (20-89 years) underwent diffusion tensor imaging and completed the Behavioral Pattern Separation Task-Object Version (BPS-O) and Rey Auditory Verbal Learning Test (RAVLT). After controlling for global effects of brain aging, exploratory skeleton-wise and targeted tractography analyses revealed that fornix integrity (fractional anisotropy, mean diffusivity, and radial diffusivity; but not mode) was significantly related to pattern separation (measured using BPS-O and RAVLT tasks), but not to recognition memory. These data suggest that hippocampal disconnection, via individual- and age-related differences in limbic tract integrity, contributes to pattern separation performance. Extending our earlier work, these results also support the notion that pattern separation relies on broad neural networks interconnecting the hippocampus

    The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment

    Get PDF
    Objectives: Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer’s disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). Method: MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. Results: We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Conclusions: Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. Key Points: ‱ PCC functioning during episodic memory relates to hippocampal functioning in MCI. ‱ PCC functioning during episodic memory does not relate to hippocampal structure in MCI. ‱ Functional network changes are an important predictor of PCC functioning in MCI

    Interactive Effects of Physical Activity and APOE-Δ4 On White Matter Tract Diffusivity in Healthy Elders

    Get PDF
    Older adult apolipoprotein-E epsilon 4 (APOE-Δ4) allele carriers vary considerably in the expression of clinical symptoms of Alzheimer\u27s disease (AD), suggesting that lifestyle or other factors may offer protection from AD-related neurodegeneration. We recently reported that physically active APOE-Δ4 allele carriers exhibit a stable cognitive trajectory and protection from hippocampal atrophy over 18 months compared to sedentary Δ4 allele carriers. The aim of this study was to examine the interactions between genetic risk for AD and physical activity (PA) on white matter (WM) tract integrity, using diffusion tensor imaging (DTI) MRI, in this cohort of healthy older adults (ages of 65 to 89). Four groups were compared based on the presence or absence of an APOE-Δ4 allele (High Risk; Low Risk) and self-reported frequency and intensity of leisure time physical activity (PA) (High PA; Low PA). As predicted, greater levels of PA were associated with greater fractional anisotropy (FA) and lower radial diffusivity in healthy older adults who did not possess the APOE-Δ4 allele. However, the effects of PA were reversed in older adults who were at increased genetic risk for AD, resulting in significant interactions between PA and genetic risk in several WM tracts. In the High Risk-Low PA participants, who had exhibited episodic memory decline over the previous 18-months, radial diffusivity was lower and fractional anisotropy was higher, compared to the High Risk-High PA participants. In WM tracts that subserve learning and memory processes, radial diffusivity (DR) was negatively correlated with episodic memory performance in physically inactive APOE-Δ4 carriers, whereas DR was positively correlated with episodic memory performance in physically active APOE-Δ4 carriers and the two Low Risk groups. The common model of demyelination-induced increase in radial diffusivity cannot directly explain these results. Rather, we hypothesize that PA may protect APOE-Δ4 allele carriers from selective neurodegeneration of individual fiber populations at locations of crossing fibers within projection and association WM fiber tracts

    One hour-post-load plasma glucose ≄155 mg/dl in healthy glucose normotolerant subjects is associated with subcortical brain MRI alterations and impaired cognition. A pilot study

    Get PDF
    Background: Glucose alterations are associated with impaired cognition. The 1-h-post-load plasma glucose ≄155mg/dl in non-diabetic subjects confers an increased risk of cardiovascular events and diabetes. This pilot study aimed to investigate whether the 1-h-post-load plasma glucose ≄155 mg/dl negatively affects the subcortical regions of the brain and the cognitive functions. Methods: We enrolled 32 non-diabetic subjects. Patients were divided into two groups based on 1-h- post-load plasma glucose value > or < 155 mg/dl: normal glucose tolerance (NGT) 1-h-high and NGT 1-h-low subjects. All subjects underwent 3 Tesla MRI and standard neuropsychological tests. Results: NGT 1-h-high subjects showed significantly lower values of both right (4.9 ± 0.9 vs. 5.1 ± 0.9ml) and left (4.8 ± 1.1 vs. 5.1 ± 1.1ml) hippocampal hemisphere volume, while right hemisphere hippocampal diffusivity was lower in the NGT 1-h-high group (10.0 ± 0.6 vs. 10.6 ± 0.5 10−4 mm2s−1). NGT 1-h-high subjects also showed a poorer memory performance. In particular, for both Rey Auditory Verbal Learning Task (RAVLT)—immediate-recall and Free and Cued Selective Reminding Test (FCSRT)—delayed total recall, we found lower cognitive test scores in the NGT-1 h-high group (26.5 ± 6.3 and 10.4 ± 0.3, respectively). Conclusions: One-hour-post-load hyperglycemia is associated with morpho-functional subcortical brain alterations and poor memory performance tests

    Exercise Training-Related Changes in Cortical Gray Matter Diffusivity and Cognitive Function in Mild Cognitive Impairment and Healthy Older Adults

    Get PDF
    Individuals with Mild Cognitive Impairment (MCI) are at an elevated risk of dementia and exhibit deficits in cognition and cortical gray matter (GM) volume, thickness, and microstructure. Meanwhile, exercise training appears to preserve brain function and macrostructure may help delay or prevent the onset of dementia in individuals with MCI. Yet, our understanding of the neurophysiological effects of exercise training in individuals with MCI remains limited. Recent work suggests that the measures of gray matter microstructure using diffusion imaging may be sensitive to early cognitive and neurophysiological changes in the aging brain. Therefore, this study is aimed to determine the effects of exercise training in cognition and cortical gray matter microstructure in individuals with MCI vs. cognitively healthy older adults. Fifteen MCI participants and 17 cognitively intact controls (HC) volunteered for a 12-week supervised walking intervention. Following the intervention, MCI and HC saw improvements in cardiorespiratory fitness, performance on Trial 1 of the Rey Auditory Verbal Learning Test (RAVLT), a measure of verbal memory, and the Controlled Oral Word Association Test (COWAT), a measure of verbal fluency. After controlling for age, a voxel-wise analysis of cortical gray matter diffusivity showed individuals with MCI exhibited greater increases in mean diffusivity (MD) in the left insular cortex than HC. This increase in MD was positively associated with improvements in COWAT performance. Additionally, after controlling for age, the voxel-wise analysis indicated a main effect of Time with both groups experiencing an increase in left insular and left and right cerebellar MD. Increases in left insular diffusivity were similarly found to be positively associated with improvements in COWAT performance in both groups, while increases in cerebellar MD were related to gains in episodic memory performance. These findings suggest that exercise training may be related to improvements in neural circuits that govern verbal fluency performance in older adults through the microstructural remodeling of cortical gray matter. Furthermore, changes in left insular cortex microstructure may be particularly relevant to improvements in verbal fluency among individuals diagnosed with MCI

    Patients with Mild Cognitive Impairment May be Stratified by Advanced Diffusion Metrics and Neurocognitive Testing

    Full text link
    BACKGROUND AND PURPOSEMild cognitive impairment (MCI) is a prevalent disorder, with a subset of patients progressing to dementia each year. Although MCI may be subdivided into amnestic or vascular types as well as into single or multiple cognitive domain involvement, most prior studies using advanced diffusion imaging have not accounted for these categories. The purpose of the current study was to determine if the pattern of diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) metrics in patients with amnestic MCI (aMCI) correlate to specific cognitive domain impairments.METHODSNineteen consecutive patients with aMCI referred for brain magnetic resonance imaging (MRI) were included. All subjects underwent neurocognitive testing. A z‐score was calculated for each domain and a composite of all four domains. Brain MRI included standard structural imaging and diffusion imaging. Volumetric, DTI, and DKI metrics were calculated and statistical analysis was performed with adjustments for multiple measures and comparisons.RESULTSStatistically significant correlations between diffusion metrics and cognitive z‐scores were detected: visuospatial‐visuoconstructional z‐scores only correlated with alterations in the corpus callosum splenium, executive functioning z‐scores with the corpus callosum genu, memory testing z‐scores with the left hippocampus, and composite z‐scores with the anterior centrum semiovale.CONCLUSIONNeuroimaging studies of patients with aMCI to date have assumed a population with homogeneous cognitive impairment. Our results demonstrate selective patterns of regional diffusion metric alterations correlate to specific cognitive domain impairments. Future studies should account for this heterogeneity, and this may also be useful for prognostication.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147217/1/jon12588_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147217/2/jon12588.pd
    • 

    corecore