104,297 research outputs found

    The Covariant Approach to LRS Perfect Fluid Spacetime Geometries

    Full text link
    The dynamics of perfect fluid spacetime geometries which exhibit {\em Local Rotational Symmetry} (LRS) are reformulated in the language of a 1+ 31+\,3 "threading" decomposition of the spacetime manifold, where covariant fluid and curvature variables are used. This approach presents a neat alternative to the orthonormal frame formalism. The dynamical equations reduce to a set of differential relations between purely scalar quantities. The consistency conditions are worked out in a transparent way. We discuss their various subcases in detail and focus in particular on models with higher symmetries within the class of expanding spatially inhomogeneous LRS models, via a consideration of functional dependencies between the dynamical variables.Comment: 25 pages, uuencoded/compressed postscript fil

    Integrity Constraints Revisited: From Exact to Approximate Implication

    Full text link
    Integrity constraints such as functional dependencies (FD), and multi-valued dependencies (MVD) are fundamental in database schema design. Likewise, probabilistic conditional independences (CI) are crucial for reasoning about multivariate probability distributions. The implication problem studies whether a set of constraints (antecedents) implies another constraint (consequent), and has been investigated in both the database and the AI literature, under the assumption that all constraints hold exactly. However, many applications today consider constraints that hold only approximately. In this paper we define an approximate implication as a linear inequality between the degree of satisfaction of the antecedents and consequent, and we study the relaxation problem: when does an exact implication relax to an approximate implication? We use information theory to define the degree of satisfaction, and prove several results. First, we show that any implication from a set of data dependencies (MVDs+FDs) can be relaxed to a simple linear inequality with a factor at most quadratic in the number of variables; when the consequent is an FD, the factor can be reduced to 1. Second, we prove that there exists an implication between CIs that does not admit any relaxation; however, we prove that every implication between CIs relaxes "in the limit". Finally, we show that the implication problem for differential constraints in market basket analysis also admits a relaxation with a factor equal to 1. Our results recover, and sometimes extend, several previously known results about the implication problem: implication of MVDs can be checked by considering only 2-tuple relations, and the implication of differential constraints for frequent item sets can be checked by considering only databases containing a single transaction

    Integrity Constraints Revisited: From Exact to Approximate Implication

    Get PDF
    Integrity constraints such as functional dependencies (FD), and multi-valued dependencies (MVD) are fundamental in database schema design. Likewise, probabilistic conditional independences (CI) are crucial for reasoning about multivariate probability distributions. The implication problem studies whether a set of constraints (antecedents) implies another constraint (consequent), and has been investigated in both the database and the AI literature, under the assumption that all constraints hold exactly. However, many applications today consider constraints that hold only approximately. In this paper we define an approximate implication as a linear inequality between the degree of satisfaction of the antecedents and consequent, and we study the relaxation problem: when does an exact implication relax to an approximate implication? We use information theory to define the degree of satisfaction, and prove several results. First, we show that any implication from a set of data dependencies (MVDs+FDs) can be relaxed to a simple linear inequality with a factor at most quadratic in the number of variables; when the consequent is an FD, the factor can be reduced to 1. Second, we prove that there exists an implication between CIs that does not admit any relaxation; however, we prove that every implication between CIs relaxes "in the limit". Finally, we show that the implication problem for differential constraints in market basket analysis also admits a relaxation with a factor equal to 1. Our results recover, and sometimes extend, several previously known results about the implication problem: implication of MVDs can be checked by considering only 2-tuple relations, and the implication of differential constraints for frequent item sets can be checked by considering only databases containing a single transaction

    Modularity and the spread of perturbations in complex dynamical systems

    Get PDF
    We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize 'perturbation modularity', defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the 'Markov stability' method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., 'relevance networks' or 'functional networks'). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously-coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems
    • …
    corecore