6 research outputs found

    Function-Based Failure Propagation for Conceptual Design

    Get PDF
    When designing a product, the earlier the potential risks can be identified, the more costs can be saved, as it is easier to modify a design in its early stages. Several methods exist to analyze the risk in a system, but all require a mature design. However, by applying the concept of “common interfaces” to a functional model and utilizing a historical knowledge base, it is possible to analyze chains of failures during the conceptual phase of product design. This paper presents a method based on these common interfaces to be used in conjunction with other methods such as risk in early design to allow a more complete risk analysis during the conceptual design phase. Finally, application of this method is demonstrated in a design setting by applying it to a thermal control subsystem

    FMDTOOLS: A Fault propagation Toolkit for Resilience Assessment in Early Design

    Get PDF
    Incorporating resilience in design is important for the long-term viability of complex engineered systems. Complex aerospace systems, for example, must ensure safety in the event of hazards resulting from part failures and external circumstances while maintaining efficient operations. Traditionally, mitigating hazards in early design has involved experts manually creating hazard analyses in a time-consuming process that hinders one’s ability to compare designs. Furthermore, as opposed to reliability-based design, resilience-based design requires using models to determine the dynamic effects of faults to compare recovery schemes. Models also provide design opportunities, since models can be parameterized and optimized and because the resulting hazard analyses can be updated iteratively. While many theoretical frameworks have been presented for early hazard assessment, most currently-available modelling tools are meant for the later stages of design. Given the wide adoption of Python in the broader research community, there is an opportunity to create an environment for researchers to study the resilience of different PHM technologies in the early phases of design. This paper describes fmdtools, an attempt to realize this opportunity with a set of modules which may be used to construct different design models, simulate system behaviors over a set of fault scenarios and analyze the resilience of the resulting simulation results. This approach is demonstrated in the hazard analysis and architecture design of a multi-rotor drone, showing how the toolkit enables a large number of analyses to be performed on a relatively simple model as it progresses through the early design process

    The risk mitigation strategy taxonomy and generated risk event effect neutralization method

    Get PDF
    In the design of new products and systems, the mitigation of potential failures is very important. The sooner in a product\u27s design mitigation can be performed, the lower the cost and easier to implement those mitigations become. However, currently, most mitigations strategies rely on the expertise of the engineers designing a product, and while models and for failure modes do exist to help, there are no guidelines for performing product changes to reduce risk. To help alleviate this, the risk mitigation strategy taxonomy is created from an empirical collection of mitigation strategies used in industry for failure mitigation, creating a consistent set of definitions for electromechanical risk mitigation strategies. By storing mitigation data in this consistent format, the data can be used to evaluate and compare different mitigation strategies. Applying this, the Generated Risk Event Effect Neutralization (GREEN) method is used to generate mitigation strategies for a product during the conceptual design of the product, where changes are the easiest to implement and cost the least. The GREEN method then compares and selects the best strategy based on the popularity, likelihood change, and consequence change that result from implementing the strategies --Abstract, page iv
    corecore