1,281 research outputs found

    Reproducing Kernels of Generalized Sobolev Spaces via a Green Function Approach with Distributional Operators

    Full text link
    In this paper we introduce a generalized Sobolev space by defining a semi-inner product formulated in terms of a vector distributional operator P\mathbf{P} consisting of finitely or countably many distributional operators PnP_n, which are defined on the dual space of the Schwartz space. The types of operators we consider include not only differential operators, but also more general distributional operators such as pseudo-differential operators. We deduce that a certain appropriate full-space Green function GG with respect to L:=P∗TPL:=\mathbf{P}^{\ast T}\mathbf{P} now becomes a conditionally positive definite function. In order to support this claim we ensure that the distributional adjoint operator P∗\mathbf{P}^{\ast} of P\mathbf{P} is well-defined in the distributional sense. Under sufficient conditions, the native space (reproducing-kernel Hilbert space) associated with the Green function GG can be isometrically embedded into or even be isometrically equivalent to a generalized Sobolev space. As an application, we take linear combinations of translates of the Green function with possibly added polynomial terms and construct a multivariate minimum-norm interpolant sf,Xs_{f,X} to data values sampled from an unknown generalized Sobolev function ff at data sites located in some set X⊂RdX \subset \mathbb{R}^d. We provide several examples, such as Mat\'ern kernels or Gaussian kernels, that illustrate how many reproducing-kernel Hilbert spaces of well-known reproducing kernels are isometrically equivalent to a generalized Sobolev space. These examples further illustrate how we can rescale the Sobolev spaces by the vector distributional operator P\mathbf{P}. Introducing the notion of scale as part of the definition of a generalized Sobolev space may help us to choose the "best" kernel function for kernel-based approximation methods.Comment: Update version of the publish at Num. Math. closed to Qi Ye's Ph.D. thesis (\url{http://mypages.iit.edu/~qye3/PhdThesis-2012-AMS-QiYe-IIT.pdf}

    Kernel methods in machine learning

    Full text link
    We review machine learning methods employing positive definite kernels. These methods formulate learning and estimation problems in a reproducing kernel Hilbert space (RKHS) of functions defined on the data domain, expanded in terms of a kernel. Working in linear spaces of function has the benefit of facilitating the construction and analysis of learning algorithms while at the same time allowing large classes of functions. The latter include nonlinear functions as well as functions defined on nonvectorial data. We cover a wide range of methods, ranging from binary classifiers to sophisticated methods for estimation with structured data.Comment: Published in at http://dx.doi.org/10.1214/009053607000000677 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Hilbert Modules - Square Roots of Positive Maps

    Full text link
    We reflect on the notions of positivity and square roots. We review many examples which underline our thesis that square roots of positive maps related to *-algebras are Hilbert modules. As a result of our considerations we discuss requirements a notion of positivity on a *-algebra should fulfill and derive some basic consequences.Comment: 24 page
    • …
    corecore