29 research outputs found

    Product architecture development enabling integrated re-design of mechanical products

    Get PDF
    Global competition forces companies to increase their competitive advantage. The design process represents an interesting area to improve the overall business performance. There are two topics involved in improving the design process. The first one is the integration of constraints from the product life cycle in the design process. The second one is the improvement of the ability to judge the influence of a certain design decision quickly. Both topics are dealt with in this paper by describing the new concept of the Product Configuration Structure (PCS). The PCS is used to represent different product configurations with respect to functions, means, components and production methods in a structured way. The product configuration structure serves as a product information backbone in an integrated re-design tool called PROFIDT. To create a better integration of the flow-based function structure and the hierarchical component structure a new concept of connection functions is introduced

    On domain modelling of the service system with its application to enterprise information systems

    Get PDF
    Information systems are a kind of service systems and they are throughout every element of a modern industrial and business system, much like blood in our body. Types of information systems are heterogeneous because of extreme uncertainty in changes in modern industrial and business systems. To effectively manage information systems, modelling of the work domain (or domain) of information systems is necessary. In this paper, a domain modelling framework for the service system is proposed and its application to the enterprise information system is outlined. The framework is defined based on application of a general domain modelling tool called function-context-behaviour-principle-state-structure (FCBPSS). The FCBPSS is based on a set of core concepts, namely: function, context, behaviour, principle, state and structure and system decomposition. Different from many other applications of FCBPSS in systems engineering, the FCBPSS is applied to both infrastructure and substance systems, which is novel and effective to modelling of service systems including enterprise information systems. It is to be noted that domain modelling of systems (e.g. enterprise information systems) is a key to integration of heterogeneous systems and to coping with unanticipated situations facing to systems.postprin

    The Role of Product Architecture in the Manufacturing Firm

    Get PDF
    Product architecture is the scheme by which the function of a product is allocated to physical components. This paper further defines product architecture, provides a typology of product architectures, and articulates the potential linkages between the architecture of the product and five areas of managerial importance: (1) product change; (2) product variety; (3) component standardization; (4) product performance; and (5) product development management. The paper is conceptual and foundational, synthesizing fragments from several different disciplines, including software engineering, design theory, operations management and product development management. The paper is intended to raise awareness of the far-reaching implications of the architecture of the product, to create a vocabulary for discussing and addressing the decisions and issues that are linked to product architecture, and to identify and discuss specific trade-offs associated with the choice of a product architecture

    Unpacking the innovation toolbox for design research and practice

    Get PDF
    The terms design and innovation are intuitively related, but the relationship between these two concepts is more complex and subtle than it appears at first sight. Few authors have made rigorous attempts to explore this relationship in depth, and the contributions present in the literature generally suffer the specialist backgrounds on which they are grounded. Consequently, this paper provides a high-level synthesis of the innovation management domain and defines an original framework that allows the positioning of the concepts from Innovation Management that are most relevant for scholars and practitioners operating in the Design domain. Specifically, this framework provides a concise representation of the typologies of innovation activities along the technology lifecycle, and associates them to their business implications and to technical and organizational implications on the design process. This framework allows scholars and practitioners from both fields to identify the typical design challenges that are inherent to each type of innovation activity, and to evaluate the suitability of specific support methods and tools

    On the Design of Functionally Integrated Aero-engine Structures: Modeling and Evaluation Methods for Architecture and Complexity

    Get PDF
    The drive for airplanes with radically reduced fuel consumption and emissions motivates engine manufacturers to explore innovative engine designs. The novelty of such engines results in changed operating conditions, such as newly introduced constraints, increased loads or rearranged interfaces. To be competitive, component developers and manufacturers must understand and predict the consequences of such changes on their sub-systems. Presently, such assessments are based on detailed geometrical models (CAD or finite element) and consume significant amounts of time. The preparation of such models is resource intensive unless parametrization is employed. Even with parametrization, alternative geometrical layouts for designs are difficult to achieve. In contrast to geometrical model-based estimations, a component architecture representation and evaluation scheme can quickly identify the functional implications for a system-level change and likely consequences on the component. The schemes can, in turn, point to the type and location of needed evaluations with detailed geometry. This will benefit the development of new engine designs and facilitate improvements upon existing designs. The availability of architecture representation schemes for functionally integrated (all functions being satisfied by one monolithic structure) aero-engine structural components is limited. The research in this thesis focuses on supporting the design of aero-engine structural components by representing their architecture as well as by developing means for the quantitative evaluation and comparison of different component designs. The research has been conducted in collaboration with GKN Aerospace Sweden AB, and the components are aero-engine structures developed and manufactured at GKN. Architectural information is generated and described based on concepts from set theory, graph theory and enhanced function–means trees. In addition, the complexities of the components are evaluated using a new complexity metric. Specifically, the developed modeling and evaluation methods facilitate the following activities: \ub7\ua0\ua0\ua0\ua0\ua0\ua0\ua0\ua0 identification and representation of function–means information for the component\ub7\ua0\ua0\ua0\ua0\ua0\ua0\ua0\ua0 representation and evaluation of component architecture\ub7\ua0\ua0\ua0\ua0\ua0\ua0\ua0\ua0 product complexity evaluation\ub7\ua0\ua0\ua0\ua0\ua0\ua0\ua0\ua0 early selection of load path architecture\ub7\ua0\ua0\ua0\ua0\ua0\ua0\ua0\ua0 impact assessment for the component’s functioning in the systemBy means of the methods developed in this thesis, the design rationale for a component is made explicit, and the storing, communicating and retrieving of information about the component in the future is enabled. Through their application to real-life engine structures, the usability of the methods in identifying early load carrying configurations and selecting a manufacturing segmenting option is demonstrated. Together, the methods provide development engineers the ability to compare alternative architectures. Further research could focus on exploring the system (engine) effects of changes in component architecture and improvements to the complexity metric by incorporating manufacturing information

    Unveiling the dynamics between Frugal Innovation and Product Performance

    Get PDF
    A Bibliometric map of Intellectual Communities in Frugal Innovation Literature. The Performance of Alternative Innovation approach: an Agent-Based Model. Modelling the Product Complexity and Frugal Innovation from a Product Architecture approach: a pseudo NK model

    A new methodology to analyze the functional and physical architecture of existing products for an assembly oriented product family identification

    Get PDF
    In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the similarity between product families by providing design support to both, production system planners and product designers. An illustrative example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach
    corecore