21 research outputs found

    Convolutional neural network architecture for geometric matching

    Get PDF
    We address the problem of determining correspondences between two images in agreement with a geometric model such as an affine or thin-plate spline transformation, and estimating its parameters. The contributions of this work are three-fold. First, we propose a convolutional neural network architecture for geometric matching. The architecture is based on three main components that mimic the standard steps of feature extraction, matching and simultaneous inlier detection and model parameter estimation, while being trainable end-to-end. Second, we demonstrate that the network parameters can be trained from synthetically generated imagery without the need for manual annotation and that our matching layer significantly increases generalization capabilities to never seen before images. Finally, we show that the same model can perform both instance-level and category-level matching giving state-of-the-art results on the challenging Proposal Flow dataset.Comment: In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017

    Learning how to be robust: Deep polynomial regression

    Get PDF
    Polynomial regression is a recurrent problem with a large number of applications. In computer vision it often appears in motion analysis. Whatever the application, standard methods for regression of polynomial models tend to deliver biased results when the input data is heavily contaminated by outliers. Moreover, the problem is even harder when outliers have strong structure. Departing from problem-tailored heuristics for robust estimation of parametric models, we explore deep convolutional neural networks. Our work aims to find a generic approach for training deep regression models without the explicit need of supervised annotation. We bypass the need for a tailored loss function on the regression parameters by attaching to our model a differentiable hard-wired decoder corresponding to the polynomial operation at hand. We demonstrate the value of our findings by comparing with standard robust regression methods. Furthermore, we demonstrate how to use such models for a real computer vision problem, i.e., video stabilization. The qualitative and quantitative experiments show that neural networks are able to learn robustness for general polynomial regression, with results that well overpass scores of traditional robust estimation methods.Comment: 18 pages, conferenc

    AnchorNet: A Weakly Supervised Network to Learn Geometry-sensitive Features For Semantic Matching

    Full text link
    Despite significant progress of deep learning in recent years, state-of-the-art semantic matching methods still rely on legacy features such as SIFT or HoG. We argue that the strong invariance properties that are key to the success of recent deep architectures on the classification task make them unfit for dense correspondence tasks, unless a large amount of supervision is used. In this work, we propose a deep network, termed AnchorNet, that produces image representations that are well-suited for semantic matching. It relies on a set of filters whose response is geometrically consistent across different object instances, even in the presence of strong intra-class, scale, or viewpoint variations. Trained only with weak image-level labels, the final representation successfully captures information about the object structure and improves results of state-of-the-art semantic matching methods such as the deformable spatial pyramid or the proposal flow methods. We show positive results on the cross-instance matching task where different instances of the same object category are matched as well as on a new cross-category semantic matching task aligning pairs of instances each from a different object class.Comment: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 201

    Unsupervised learning of object landmarks by factorized spatial embeddings

    Full text link
    Learning automatically the structure of object categories remains an important open problem in computer vision. In this paper, we propose a novel unsupervised approach that can discover and learn landmarks in object categories, thus characterizing their structure. Our approach is based on factorizing image deformations, as induced by a viewpoint change or an object deformation, by learning a deep neural network that detects landmarks consistently with such visual effects. Furthermore, we show that the learned landmarks establish meaningful correspondences between different object instances in a category without having to impose this requirement explicitly. We assess the method qualitatively on a variety of object types, natural and man-made. We also show that our unsupervised landmarks are highly predictive of manually-annotated landmarks in face benchmark datasets, and can be used to regress these with a high degree of accuracy.Comment: To be published in ICCV 201
    corecore