6 research outputs found

    An efficient FPGA implementation of versatile video coding intra prediction

    Get PDF
    Versatile Video Coding (VVC) is a new international video compression standard offering much better compression efficiency than previous video compression standards at the expense of much higher computational complexity. In this paper, an efficient FPGA implementation of VVC intra prediction for angular prediction modes of 4x4, 8x8, 16x16 and 32x32 prediction unit sizes is proposed. In the proposed FPGA implementation, four constant multiplications used in one intra angular prediction equation are implemented using two DSP blocks and two adders in FPGA. The proposed FPGA implementation of VVC intra prediction, in the worst case, can process 34 full HD (1920x1080) frames per second

    An efficient FPGA implementation of HEVC intra prediction

    Get PDF
    Intra prediction algorithm used in High Efficiency Video Coding (HEVC) standard has very high computational complexity. In this paper, an efficient FPGA implementation of HEVC intra prediction is proposed for 4×4, 8×8, 16×16 and 32×32 angular prediction modes. In the proposed FPGA implementation, one intra angular prediction equation is implemented using one DSP block in FPGA. The proposed FPGA implementation, in the worst case, can process 55 Full HD (1920×1080) video frames per second. It has up to 34.66% less energy consumption than the original FPGA implementation of HEVC intra prediction. Therefore, it can be used in portable consumer electronics products that require a real-time HEVC encoder

    An energy-aware system-on-chip architecture for intra prediction in HEVC standard

    Get PDF
    High resolution 4K and 8K are becoming the more used in video applications. Those resolutions are well supported in the new HEVC standard. Thus, embedded solutions such as development of dedicated ystems-On-Chips (SOC) to accelerate video processing on one chip instead of only software solutions are commendable. This paper proposes a novel parallel and high efficient hardware accelerator for the intra prediction block. This accelerator achieves a high-speed treatment due to pipelined processing units and parallel shaped architecture. The complexity of memory access is also reduced thanks to the proposed design with less increased power consumption. The implementation was performed on the 7 Series FPGA 28 nm technology resources on Zynq-7000 and results show, that the proposed architecture takes 16520 LUTs and can reach 143.65 MHz as a maximum frequency and it is able to support the throughput of 3840×2160 sequence at 90 frames per second

    Fully pipelined real time hardware solution for High Efficiency Video Coding (HEVC) intra prediction

    No full text
    International audienceA fully pipelined hardware accelerator for the High Efficiency Video Coding (HEVC) intra prediction is presented in this paper in order to reduce the computation complexity coming with this module and to accelerate the concerned calculations. Two reconfigurable structures are developed in this paper, the first one concerns angular modes and is identified as Processing Element for Angular (PEA) modes, the other is made in order to handle with the Planar mode and is identified as Processing Element for the Planar (PEP) mode. Each structure is repeated in five paths, that our architecture composed of, working in parallel way. This architecture supports all intra prediction modes for all prediction unit sizes. The synthesis results show that our design can run at 219 MHz for Xilinx Virtex 6 and is capable to process real time 110 1080p frames per second or 24 4K frames per second. (C) 2015 Elsevier B.V. All rights reserved

    Low energy HEVC and VVC video compression hardware

    Get PDF
    Video compression standards compress a digital video by reducing and removing redundancy in the digital video using computationally complex algorithms. As spatial and temporal resolutions of videos increase, compression efficiencies of video compression algorithms are also increasing. However, increased compression efficiency comes with increased computational complexity. Therefore, it is necessary to reduce computational complexities of video compression algorithms without reducing their visual quality in order to reduce area and energy consumption of their hardware implementations. In this thesis, we propose a novel technique for reducing amount of computations performed by HEVC intra prediction algorithm. We designed low energy, reconfigurable HEVC intra prediction hardware using the proposed technique. We also designed a low energy FPGA implementation of HEVC intra prediction algorithm using the proposed technique and DSP blocks. We propose a reconfigurable VVC intra prediction hardware architecture. We also propose an efficient VVC intra prediction hardware architecture using DSP blocks. We designed low energy VVC fractional interpolation hardware. We propose a novel approximate absolute difference technique. We designed low energy approximate absolute difference hardware using the proposed technique. We propose a novel approximate constant multiplication technique. We designed approximate constant multiplication hardware using the proposed technique. We quantified computation reductions achieved by the proposed techniques and video quality loss caused by the proposed approximation techniques. The proposed approximate absolute difference technique and approximate constant multiplication technique cause very small PSNR loss. The other proposed techniques cause no PSNR loss. We implemented the proposed hardware architectures in Verilog HDL. We mapped the Verilog RTL codes to Xilinx Virtex 6 or Xilinx Virtex 7 FPGAs and estimated their power consumptions using Xilinx XPower Analyzer tool. The proposed techniques significantly reduced power and energy consumptions of these FPGA implementation

    Low energy video processing and compression hardware designs

    Get PDF
    Digital video processing and compression algorithms are used in many commercial products such as mobile devices, unmanned aerial vehicles, and autonomous cars. Increasing resolution of videos used in these commercial products increased computational complexities of digital video processing and compression algorithms. Therefore, it is necessary to reduce computational complexities of digital video processing and compression algorithms, and energy consumptions of digital video processing and compression hardware without reducing visual quality. In this thesis, we propose a novel adaptive 2D digital image processing algorithm for 2D median filter, Gaussian blur and image sharpening. We designed low energy 2D median filter, Gaussian blur and image sharpening hardware using the proposed algorithm. We propose approximate HEVC intra prediction and HEVC fractional interpolation algorithms. We designed low energy approximate HEVC intra prediction and HEVC fractional interpolation hardware. We also propose several HEVC fractional interpolation hardware architectures. We propose novel computational complexity and energy reduction techniques for HEVC DCT and inverse DCT/DST. We designed high performance and low energy hardware for HEVC DCT and inverse DCT/DST including the proposed techniques. VII We quantified computation reductions achieved and video quality loss caused by the proposed algorithms and techniques. We implemented the proposed hardware architectures in Verilog HDL. We mapped the Verilog RTL codes to Xilinx Virtex 6 and Xilinx ZYNQ FPGAs, and estimated their power consumptions using Xilinx XPower Analyzer tool. The proposed algorithms and techniques significantly reduced the power and energy consumptions of these FPGA implementations in some cases with no PSNR loss and in some cases with very small PSNR loss
    corecore