89,796 research outputs found

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers

    Anticipation and Risk – From the inverse problem to reverse computation

    Get PDF
    Abstract. Risk assessment is relevant only if it has predictive relevance. In this sense, the anticipatory perspective has yet to contribute to more adequate predictions. For purely physics-based phenomena, predictions are as good as the science describing such phenomena. For the dynamics of the living, the physics of the matter making up the living is only a partial description of their change over time. The space of possibilities is the missing component, complementary to physics and its associated predictions based on probabilistic methods. The inverse modeling problem, and moreover the reverse computation model guide anticipatory-based predictive methodologies. An experimental setting for the quantification of anticipation is advanced and structural measurement is suggested as a possible mathematics for anticipation-based risk assessment

    Measurement with Persons: A European Network

    Get PDF
    The European ‘Measuring the Impossible’ Network MINET promotes new research activities in measurement dependent on human perception and/or interpretation. This includes the perceived attributes of products and services, such as quality or desirability, and societal parameters such as security and well-being. Work has aimed at consensus about four ‘generic’ metrological issues: (1) Measurement Concepts & Terminology; (2) Measurement Techniques: (3) Measurement Uncertainty; and (4) Decision-making & Impact Assessment, and how these can be applied specificallyto the ‘Measurement of Persons’ in terms of ‘Man as a Measurement Instrument’ and ‘Measuring Man.’ Some of the main achievements of MINET include a research repository with glossary; training course; book; series of workshops;think tanks and study visits, which have brought together a unique constellation of researchers from physics, metrology,physiology, psychophysics, psychology and sociology. Metrology (quality-assured measurement) in this area is relativelyunderdeveloped, despite great potential for innovation, and extends beyond traditional physiological metrology in thatit also deals with measurement with all human senses as well as mental and behavioral processes. This is particularlyrelevant in applications where humans are an important component of critical systems, where for instance health andsafety are at stake

    Classical Correlations and Entanglement in Quantum Measurements

    Get PDF
    We analyze a quantum measurement where the apparatus is initially in a mixed state. We show that the amount of information gained in a measurement is not equal to the amount of entanglement between the system and the apparatus, but is instead equal to the degree of classical correlations between the two. As a consequence, we derive an uncertainty-like expression relating the information gain in the measurement and the initial mixedness of the apparatus. Final entanglement between the environment and the apparatus is also shown to be relevant for the efficiency of the measurement.Comment: to appear in Physical Review Letter
    corecore