169 research outputs found

    SoK:Delay-based Cryptography

    Get PDF

    SoK: Delay-based Cryptography

    Get PDF
    In this work, we provide a systematisation of knowledge of delay-based cryptography, in which we discuss and compare the existing primitives within cryptography that utilise a time-delay. We start by considering the role of time within cryptography, explaining broadly what a delay aimed to achieve at its inception and now, in the modern age. We then move on to describing the underlying assumptions used to achieve these goals, and analyse topics including trust, decentralisation and concrete methods to implement a delay. We then survey the existing primitives, discussing their security properties, instantiations and applications. We make explicit the relationships between these primitives, identifying a hierarchy and the theoretical gaps that exist. We end this systematisation of knowledge by highlighting relevant future research directions within the field of delay-based cryptography, from which this area would greatly benefit

    SoK: Public Randomness

    Get PDF
    Public randomness is a fundamental component in many cryptographic protocols and distributed systems and often plays a crucial role in ensuring their security, fairness, and transparency properties. Driven by the surge of interest in blockchain and cryptocurrency platforms and the usefulness of such component in those areas, designing secure protocols to generate public randomness in a distributed manner has received considerable attention in recent years. This paper presents a systematization of knowledge on the topic of public randomness with a focus on cryptographic tools providing public verifiability and key themes underlying these systems. We provide concrete insights on how state-of-the-art protocols achieve this task efficiently in an adversarial setting and present various research gaps that may be suitable for future research

    Cornucopia: Distributed randomness beacons at scale

    Get PDF
    We propose Cornucopia, a distributed randomness beacon protocol combining accumulators and verifiable delay functions. Cornucopia extends the Unicorn protocol of Lenstra and Wesolowski, utilizing an accumulator to enable efficient verification by each participant that their randomness contribution has been included in the beacon output. The security of this construction reduces to a novel property of accumulators, insertion security. We first show that not all accumulators are insertion-secure. We then prove that common constructions (Merkle trees and RSA accumulators) are naturally insertion-secure. Finally, we give a generic transformation from any universal accumulator (supporting non-membership proofs) to an insertion-secure accumulator, albeit with an efficiency loss proportional to the security parameter

    RandChain: A Scalable and Fair Decentralised Randomness Beacon

    Get PDF
    We propose RANDCHAIN, a Decentralised Randomness Beacon (DRB) that is the first to achieve both scalability (i.e., a large number of participants can join) and fairness (i.e., each participant controls comparable power on deciding random outputs). Unlike existing DRBs where participants are collaborative, i.e., aggregating their local entropy into a single output, participants in RANDCHAIN are competitive, i.e., competing with each other to generate the next output. The competitive design reduces the communication complexity from at least O(n2) to O(n) without trusted party, breaking the scalability limit in existing DRBs. To build RANDCHAIN, we introduce Sequential Proof-of-Work (SeqPoW), a cryptographic puzzle that takes a random and unpredictable number of sequential steps to solve. We implement RANDCHAIN and evaluate its performance on up to 1024 nodes, demonstrating its superiority (1.3 seconds per output with a constant bandwidth of 200KB/s per node) compared to state-of-the-art DRBs RandHerd (S&P’18) and HydRand (S&P’20)
    • …
    corecore