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Abstract—We propose RANDCHAIN, a Decentralised Random-
ness Beacon (DRB) that is the first to achieve both scalability (i.e.,
a large number of participants can join) and fairness (i.e., each
participant controls comparable power on deciding random out-
puts). Unlike existing DRBs where participants are collaborative,
i.e., aggregating their local entropy into a single output, partic-
ipants in RANDCHAIN are competitive, i.e., competing with each
other to generate the next output. The competitive design reduces
the communication complexity from at least O(n2) to O(n) with-
out trusted party, breaking the scalability limit in existing DRBs.

To build RANDCHAIN, we introduce Sequential Proof-of-Work
(SeqPoW), a cryptographic puzzle that takes a random and
unpredictable number of sequential steps to solve. We implement
RANDCHAIN and evaluate its performance on up to 1024 nodes,
demonstrating its superiority (1.3 seconds per output with a
constant bandwidth of 200KB/s per node) compared to state-
of-the-art DRBs RandHerd (S&P’18) and HydRand (S&P’20).

I. INTRODUCTION

Randomness is a key building block for various protocols
and applications. Decentralised Randomness Beacon (DRB)
allows a set of participants to jointly generates random out-
puts periodically. It has been a promising approach to pro-
vide secure randomness. To support security-critical protocols
and applications with high financial stake such as public
blockchains [1]–[4] and voting protocols [5]–[7], DRBs have
to be 1) scalable: even with a large number of participants, the
DRB produces random outputs with an expected rate, and 2)
fair: each participant controls comparable power on deciding
random outputs. Without scalability, the DRB can be main-
tained only by a small set of participants. Without fairness,
the DRB can be dominated by a small subset of powerful
participants out of the entire set. When the DRB is dominated
by a small set of participants, they can collude and manipulate
the randomness in order to take advantage in protocols and
applications supported by the DRB. However, designing a
DRB that is both scalable and fair remains an open challenge.

Existing DRBs do not scale. Most DRB protocols are
built from periodically executing a Distributed Randomness
Generation (DRG) protocol, where participants contribute
their local entropy and aggregate them into a single random
output. Commonly used DRG protocols are based on
threshold cryptosystems [3], [8], [9], Verifiable Random
Functions (VRFs) [2], [10], [11], and/or Publicly Verifiable
Secret Sharing (PVSS) [1], [12]–[16].

While DRG-based DRBs are fair given their “one-man-
one-vote” design, they are not scalable, as they suffer from
at least O(n2) communication complexity. DRG-based DRBs

usually involve all-to-all broadcast primitives, leading to at
least O(n2) communication complexity. To overcome the
communication complexity bound, DRG-based DRBs have to
employ a central point that relays messages. The central point
is either a dealer [8], [9], [11], [13], [15] or a leader elected
by a leader election protocol [1]–[3], [10], [12]. A dealer is
either implemented as a trusted party or in a distributed manner
which introduces extra communication overhead [17]. If the
elected leader is corrupted, then it can bias random outputs
by withholding messages and can compromise the liveness by
sending messages to and advancing rounds for only a subset of
participants [18], [19]. To tolerate corrupted leaders, the DRB
has to employ an extra round synchronisation protocol [19],
which allows participants to re-synchronise and replace the
corrupted leader with a new leader to start a new round. How-
ever, round synchronisation protocols introduce extra commu-
nication complexity [18], [19] and/or increase latency [20].

The scalability crux: participants are collaborative. We
attribute these limitations to the design that participants
are collaborative: participants contribute their local inputs
and aggregate them into a single output. The collaborative
process ensures that no participant can fully control random
outputs, making them hard to bias or predict. However,
in order to collaborate, participants should continuously
broadcast messages to and synchronise with each other. The
former incurs at least O(n2) communication complexity, and
the latter requires round synchronisation. All extra designs
incorporated with DRG – e.g., using dealers [8], [9], [13],
[15], leader election [1]–[3], [10]–[12], sharding [3], [12],
cryptographic sortition [10], Byzantine consensus [10], [14],
and erasure coding [13], [15] – aim at reducing the impact of
the above two limitations. However, since all of them are in
the collaborative design, they inherently suffer from the two
limitations and cannot address them completely.

Competitive DRBs: a new design space. To address the
inherent limitations in the collaborative design, we consider a
new design space for DRBs called competitive DRBs. Unlike
existing DRBs where participants are collaborative, partici-
pants in competitive DRBs compete to solve cryptographic
puzzles, whose solutions are unpredictable. The participant
who first solves the puzzle becomes the leader, and broadcasts
the puzzle solution to other participants. Upon a new puzzle
solution, participants execute Nakamoto consensus [21] to
agree on and append it to the sequence of puzzle solutions,
ensuring consistency and liveness. A random output is
extracted from each puzzle solution by using a Verifiable
Delay Function (VDF) [22] which takes longer time than the
puzzle solution becoming irreversible in the sequence. The



time delay prevents the adversary from withholding its puzzle
solution and biasing the random output to its own advantage.

RANDCHAIN: the first scalable and fair DRB. We propose
RANDCHAIN, the first competitive DRB. RANDCHAIN works
in permissioned settings identical to all existing DRBs, and is
the first to achieve both scalability and fairness: it allows an
unbounded number of participants to participate and restricts
their voting power to be comparable. To achieve scalability,
RANDCHAIN employs Nakamoto consensus [21] with linear
communication complexity. To achieve fairness, RANDCHAIN
realises non-parallelisable mining [23], where more processors
do not give any advantage in solving a puzzle. As no existing
primitive can provide non-parallelisable mining, we introduce
Sequential Proof-of-Work (SeqPoW), a cryptographic puzzle
that takes a random and unpredictable number of sequential
steps to solve. SeqPoW is also of independent interest in other
protocols such as leader election and Proof-of-Stake (PoS)-
based consensus. Our contributions are summarised as follows.

• We identity and formalise a new design space for DRBs,
namely competitive DRBs, which break the scalability
limit in existing DRB designs.

• As existing primitives lack the properties desired by
the competitive DRBs (given the analysis in §III), we
introduce and formalise the concept of SeqPoW that
satisfies these properties. We provide two constructions
based on VDFs [24], [25] and Sloth [26], and analyse
their security and efficiency. We also discuss applications
of SeqPoW in leader election and Proof-of-Stake
(PoS)-based consensus (§IV).

• We provide RANDCHAIN as a concrete instantiation
of competitive DRBs, and provide an analysis on its
security and performance (§V).

• We provide an implementation of SeqPoW and
RANDCHAIN and evaluate their performance (§VI). The
implementation adds/changes about 4500 Rust lines of
code (LoCs) on top of parity-bitcoin [27]. The
evaluation results show that RANDCHAIN is indeed
scalable and fair: with 1024 nodes, RANDCHAIN can
produce a random output every 1.3 seconds (2.3x faster
than RandHerd [12], 6.6x faster than HydRand [14] with
128 nodes); utilise constant bandwidth of about 200
KB/s per node (comparable with RandHerd with 1024
nodes and HydRand with 128 nodes); and provide nodes
with comparable chance of producing random outputs.

• We establish a unified evaluation framework of DRBs,
and compare RANDCHAIN with existing DRBs under
this framework (§VII). Our comparison shows that
RANDCHAIN is the only DRB that is secure, scalable
and fair, without relying on any trusted third party.

We conclude the paper in §VIII, and provide additional
details in the appendix. Appendix A provides preliminary
definitions on VDFs. Appendix B provides formal definitions
of SeqPoW and security proofs of SeqPoW. Appendix C
provides formal security proofs for our SeqPoW constructions.
Appendix D provides formal security proofs for RANDCHAIN.
Appendix E provides the details of existing DRBs. Appendix F
discusses three limitations and the corresponding resolutions
of RANDCHAIN, namely the energy efficiency, churn tolerance
and finality.

II. MODEL OF DRBS

In this section, we define the model for DRBs, including the
system model, correctness properties and performance metrics.

A. System model

System setting. We consider the system setting common in
most DRBs [1]–[3], [8]–[16]. In particular, a DRB contains a
set of n participants P={p1,...,pn}. Each participant pk ∈P
has a pair of secret key skk and public key pkk, and is
uniquely identified by pkk. Each participant is only directly
connected to a subset of peers in the system. Participants
jointly maintain a unique sequence of random outputs.
Participants continuously execute the DRB protocol to agree
on new random outputs and append them to the sequence.

Network model. Network model concerns the timing
guarantee of messages delivery between participants. We
consider a synchronous network where messages are delivered
within a known finite time bound ∆.

Adversary model. The adversary controls αn processors,
and can corrupt at most αn participants in the system,
where α < 1

2 . The adversary is adaptive in the sense that it
can corrupt any set of ≤ αn participants at any time. The
adversary can coordinate corrupted participants without delay;
and can arbitrarily delay, drop, forge and modify messages
from its corrupted participants.

B. Correctness properties

Consistency and liveness. Similar to consensus, DRBs should
satisfy consistency and liveness. Consistency ensures that
participants agree on a unique sequence of random outputs, and
liveness ensures that participants produce new random outputs
at an admissible rate. We adapt the common-prefix and chain-
growth definitions from Nakamoto consensus protocols [28]–
[31] rather than the agreement and termination definitions
from BFT-style consensus protocols [32], as we consider a
streamlined execution rather than a single-shot execution.

For consistency, we adapt the common-prefix definition
in Nakamoto-style consensus where correct participants can
only have different views on a certain number of last blocks.
In DRBs, the consistency ensures that correct participants
can only have different views on a certain number of last
random outputs. Some randomness-based applications require
RB to have finality [33], i.e., at any time, correct participants
do not have conflicted views on the random output, which
is equivalent to 0-consistency or agreement in Byzantine
consensus [34].

Definition 1 (Υ-Consistency). For any two correct participants
at any time, their sequences can differ only in the last Υ∈N
random outputs.

For liveness, we adapt the chain-growth definition in
Nakamoto-style consensus where correct participants produce
blocks at a certain rate. In DRBs, the liveness ensures that
correct participants produce random outputs at a certain rate.
If the speed does not reach the lowest speed, then the DRB
cannot satisfy the requirement of real-world applications.
Papers formalising a single-shot execution of DRBs refer
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liveness as termination [8], [10], [16] or Guaranteed Output
Delivery (G.O.D.) [9], [13], [15], [35] where, for every round,
a new random output will be produced.

Definition 2 ((t,τ)-Liveness). For any time period of length
t, every correct participant learns at least t · τ new random
outputs, where t,τ ∈R+.

Uniform distribution. Uniform distribution ensures that
every random output in the DRB is statistically close to a
uniformly random string.

Definition 3 (Uniform distribution). Every random output is
indistinguishable from a random string of the same length,
except for negligible probability.

Unpredictability. Unpredictability ensures that the adversary
cannot predict random outputs that have not been produced yet.
Otherwise, if the adversary can predict future random outputs,
then it can take advantage in randomness-based applications.

Definition 4 (Unpredictability). Any adversary can only
obtain negligible advantage on the following game. Assuming
participants in the DRB agree on an `-long sequence of
random outputs. Before the (`+1)-th random output R`+1 is
produced, the adversary makes a guess R′`+1 on R`+1. The
adversary’s advantage is quantified as Pr

[
R′`+1 =R`+1

]
.

Unbiasibility. Unbiasibility ensures that the adversary
cannot influence the produced random output to another
value to its own advantage [9], [12], [14], [35]. Otherwise,
if the adversary can bias random outputs, then it can take
advantage in randomness-based applications. Unbiasibility can
be achieved by the output-independent-abort property [36]:
the adversary has to decide to proceed or abort the protocol
before learning the protocol’s outcome. In the context of an
Υ-consistent DRB, output-independent-abort ensures that,
participants learn a random output only after it becomes
Υ-deep in a correct participant’s view.

Definition 5 (Unbiasibility). Assuming a DRB satisfies
Υ-consistency, and participants in the DRB agree on an
`-long sequence of random outputs. The adversary learns
the (` + 1)-th random output R`+1 only after (` + Υ + 1)
consecutive random outputs are recorded in the sequence of at
least one correct participant, except for negligible probability.

C. Performance metrics

Communication complexity. Communication complexity is
the total amount of communication required to complete a
protocol [37]. In the context of DRBs, the communication
complexity is quantified as the amount of communication (in
bits) all participants take to generate a random output. For
example, for a DRB that includes n participants and achieves
O(n) (aka linear) communication complexity, each participant
handles a constant amount of communication for generating a
random output, leading to the total amount of communication
proportional to n. A protocol may have different communica-
tion complexity in the best-case and worst-case executions.

Latency. Latency is the time required to complete a protocol.
In the context of DRBs, the latency is quantified as the time

participants take to generate a random output. Similarly, a
protocol may have different latencies in the best-case and
worst-case executions. If the protocol’s latency only depends
on the actual network delay δ but not the delay upper bound
∆, then the protocol is responsive [38].

III. DESIGN GOALS AND STRAWMAN DESIGNS

In this section, we describe our two design goals, namely
scalability and fairness, and analyse two strawman designs
towards them. The analysis reveals the need for a cryptographic
puzzle with two properties, namely sequentiality and
hardness. As no existing puzzle achieves these two properties
simultaneously, we are motivated to propose a new primitive
named Sequential Proof-of-Work (SeqPoW, §IV) that satisfies
both properties, allowing us to construct RANDCHAIN (§V).

A. Design goals: scalability and fairness

Our goal is to design a DRB that can serve security-critical
protocols and applications with high financial stake, such as
public blockchains and voting protocols. To ensure that the
DRB can be trusted by such protocols and applications, we
demand two additional requirements on the DRB atop the
model in §II, namely scalability and fairness.

Scalability. Scalability specifies that the DRB can produce
random outputs regularly even in the presence of a large
set of n participants. Having a large set of participants
reduces the trust needed on each participant, making the DRB
more resilient to malicious parties. Otherwise, if the DRB
is maintained by a small set of participants, then they can
collude to bias and/or predict random outputs and thus take
advantage in the randomness-based applications.

To produce random outputs regularly when n is large,
the DRB has to minimise the communication complexity and
latency. For communication complexity, O(n) is considered
scalable as each participant handles a constant amount of
communication independent with n, while O(n2) is not as each
node handles overwhelming communication overhead when
n is large. For latency, demand it to be as small as possible.

Fairness. Fairness specifies that each participant controls
comparable voting power on deciding random outputs,
regardless of their financial stake or hardware resource. The
voting power of a node is quantified as the amount of its
contributed entropy in collaborative DRBs, and as its chance
of producing the next block in competitive DRBs. Without
fairness, few powerful participants among all participants will
control the randomness generation process of the DRB. This
is not desirable as the powerful participants can collude to
compromise the DRB, similar to the scalability case.

Unlike DRG-based DRBs that satisfy fairness immediately
given the “one-man-one-vote” nature, participants in
competitive DRBs may have different voting power,
leading to weak fairness. We define fairness as the maximum
voting power difference among participants in the DRB. In
the context of competitive DRBs, fairness is the maximum
difference of nodes’ chances of producing the next block.

Definition 6 (µ-Fairness). Assuming all messages are
delivered instantly and participants in a DRB agree on an `-
long sequence of random outputs. Let X(pk) be the event that
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participant pk produces the (`+ 1)-th random output earlier
than other participants. For any two participants pi and pj ,

µ= min
∀i,j∈[n]

Pr [X(pi)]

Pr [X(pj)]

When µ = 1, the DRB achieves ideal fairness and the
network is fully decentralised, and vice versa when µ→0. As
a design goal, we demand µ to be as close to 1 as possible.

B. Strawman designs

We analyse two strawman designs towards the two goals.
The analysis reveals the need for a cryptographic puzzle
satisfying two properties, namely sequentiality and hardness.
No existing puzzle satisfies both of them simultaneously.

Strawman#1: Nakamoto-style DRBs. The scalability goal
requires the DRB to achieve O(n) communication complexity.
We have shown in §I that no existing DRB achieves it without
a trusted third party, motivating us to propose the competitive
DRB approach. A natural choice is building upon the
Nakamoto-style consensus, where each participant solves a
PoW puzzle to become the leader, and a random output is
extracted from the PoW solution deterministically.

Such design satisfies scalability but not fairness, as
participants with more mining hardware have more chance
of mining blocks than others. To achieve fairness, the DRB
has to prevent participants from investing more mining
resource to take advantage in mining. A possible solution is
the non-parallelisable mining [23], where a participant can
only use a single processor for mining and cannot speed
up mining by using multiple parallel processors. To realise
non-parallelisable mining, the puzzle has to be sequential: it
cannot be solved faster by using multiple parallel processors.

Strawman#2: Applying time-sensitive cryptography.
Sequentiality has been formalised and achieved in time-
sensitive cryptographic primitives. For example, Verifiable
Delay Functions (VDFs) [22] enforce a parameterisable time
delay on generating outputs and allow to verify outputs
fast. Recent proposals [39], [40] apply VDFs to construct
Nakamoto-style consensus: each participant derives a random
output y from the latest system state, maps y to a random
time parameter t in a designated interval, and solves a VDF
with time parameter t. The first participant solving the VDF
derives the next random output from its VDF output.

However, Nakamoto-style consensus with existing time-
sensitive primitives achieves weaker fairness and consistency
guarantee. All existing time-sensitive primitives have a fixed
time delay. Nakamoto-style consensus with such puzzles is
locally predictable [41]: given the input x, each participant
can learn the time parameter t immediately, and thus can
predict when it will propose the next random output. The
adversary can apply such prediction to amplify its advantage in
selfish mining [42] and double-spending [21], weakening the
system’s fairness and consistency guarantee, respectively [41].

To make the mining process unpredictable, the puzzle
has to take a random and unpredictable number of attempts
to solve. PoW satisfies such requirement by providing the
hardness property [43]: upon each attempt on solving the

puzzle, the solver has probability 1
T to solve the puzzle,

where T is a hardness parameter. However, none of existing
primitives satisfies both sequentiality and hardness.

IV. SEQUENTIAL PROOF-OF-WORK

In this section, we introduce Sequential Proof-of-Work
(SeqPoW), a PoW variant that satisfies both sequentiality and
hardness. We formalise SeqPoW, provide two constructions,
and analyse their security and efficiency.

A. Preliminaries on VDFs

Verifiable Delay Function (VDF) [22], [24], [25] allows
a prover to evaluate an input, and produce a unique output
deterministically with a succinct proof attesting the output’s
correctness. The evaluation process takes non-negligible
and parameterisable time to execute, even with parallelism.
Appendix A provides its formal definition. A VDF is a tuple
of four algorithms VDF=(Setup,Eval,Prove,Verify):

Setup(λ)→pp: On input security parameter λ, outputs public
parameter pp.

Eval(pp,x,t)→y: On input pp, input x and time parameter
t∈N+, produces output y.

Prove(pp,x,y,t)→π: On input pp, x, y and t, outputs proof π.
Verify(pp,x,y,π,t)→{0,1}: On input pp, x, y, π and t,

outputs 1 if y is a correct evaluation, otherwise 0.

VDF satisfies three properties, namely completeness that
all outputs from honest evaluations can pass the verification,
soundness that all outputs from malicious evaluations cannot
pass the verification, and σ-sequentiality that Eval(·,·,t) cannot
be evaluated in less than time σ(t) even with an unbounded
amount of parallel processors. Sequentiality also implies
unpredictability: before finishing Eval(·), the probability of
making a correct guess on its output is negligible.

VDFs are usually constructed from an iteratively
sequential function (ISF) and a succinct proof attesting the
ISF’s execution results [24], [25]. ISF f(t, x) = gt(x) is a
function that composes a sequential function g(x) for t times.
The fastest way of computing ISF f(t,x) is to iterate g(x)
for t times, as g(·) is sequential. Squaring and squaring
root over cyclic groups are two sequential functions with
proven sequentiality [26], [44], [45]. Their repeated versions
– repeated squaring [24], [25] and repeated squaring root [26]
over cyclic groups – are two widely used ISFs.

ISF f(·) usually provides the self-composability property:
for any x and (t1,t2), let y←f(x,t1), we have f(x,t1+t2)=
f(y, t2). VDFs usually inherit the self-composability from
ISFs, i.e., for all λ, t1, t2, let pp ← Setup(λ) and y ←
Eval(pp,x,t1), it holds that Eval(pp,x,t1+t2)=Eval(pp,y,t2).
Such VDFs are known as self-composable VDFs [46].

B. Basic idea of SeqPoW

SeqPoW is a cryptographic puzzle that takes a random and
unpredictable number of sequential steps to solve. As shown in
Figure 1, given an initial SeqPoW puzzle S0, the prover keeps
solving it by incrementing an ISF. Each iteration takes the last
output Si−1 as input and produces a new output Si. For each
output Si, the prover checks whether it satisfies a difficulty
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Figure 1: Sequential Proof-of-Work.

parameter T . If yes, then Si is a valid solution, and the prover
can generate a proof πi on it. Given Si and πi, the verifier can
check Si’s correctness without solving the puzzle again.

Comparisons with relevant primitives (Table I). SeqPoW
is the first primitive that satisfies both sequentiality and
hardness, and therefore can be used for constructing
RANDCHAIN. SeqPoW differs from VDFs and other time-
sensitive cryptographic primitives, e.g., Timelock Puzzle
(TLP) [47] and Proofs of Sequential Work (PoSW) [48], [49]
in that, the SeqPoW prover iterates an ISF for a randomised
(rather than given) number of times. In addition, compared to
TLP, SeqPoW provides publicly verifiable outputs. Compared
to PoSW, SeqPoW allows outputs to be unique. SeqPoW
differs from PoW in that SeqPoW is sequential. SeqPoW
differs from memory-hard functions (MHFs) [50]–[52] in
that, SeqPoW is bottlenecked by the processor’s frequency,
whereas MHF is bottlenecked by the memory bandwidth.

Two concurrent works [39], [53] propose ways to
randomise the number of iterations in VDFs, without formal
treatment. We are the first to formally study such primitives,
including formal definitions, concrete constructions with se-
curity proofs, implementation and evaluation. We also provide
SeqPoW with uniqueness that both of them cannot achieve.

Applications. Given the unpredictability and hardness
properties, SeqPoW is of independent interest for other
protocols. First, SeqPoW can improve the fairness of leader
election protocols. Mining in PoW-based consensus can be
seen as a way of electing leaders: given a set of participants,
the first participant proposing a valid PoW solution becomes
the leader and proposes a block. SeqPoW can be a drop-in
replacement of PoW for the leader election purpose. In §V-C,
we show that compared to parallelisable PoW, SeqPoW-based
leader election achieves better fairness.

Second, SeqPoW can improve the fault tolerance capacity
of Proof-of-Stake (PoS)-based consensus. In Proof-of-Stake
(PoS)-based consensus [54], each participant’s chance of min-
ing a block is in proportion to its stake, e.g, the participant’s
balance. Most PoS-based consensus protocols [1], [2], [55]–
[57] select block proposers in a predictable [41], [58] way, thus
are vulnerable to various prediction-based attacks and tolerate
less Byzantine mining power [41], [58] than PoW-based
consensus, as analysed in §III. To make PoS-based consensus
unpredictable, one can randomise the process of selecting
block proposers. SeqPoW can provide such functionality: each
participant solves a SeqPoW with its identity, the last block,
and the difficulty parameter inversely proportional to its stake
as input, and the first participant solving its SeqPoW becomes

Table I: SeqPoW v.s. relevant primitives.

Primitive Execution Output

Seq
uen

tia
l

# Step
s

Bott
len

eck

Unique

Veri
fiab

le

Time-
sensitive

TLP 3 Fixed Proc. freq. 3 7
PoSW 3 Fixed Proc. freq. 7 3
VDF 3 Fixed Proc. freq. 3 3

Resource-
consuming

MHF 3or 7 Fixed Mem. bandw. 3 3

PoW 7 Random Proc. freq. +
# of procs. 7 3

Our work SeqPoWVDF 3 Random Proc. freq. 7 3
SeqPoWSloth 3 Random Proc. freq. 3 3

the block proposer. A concurrent and independent work [53]
provides a concrete protocol following the similar idea.

C. Definition

We provide formal definitions of SeqPoW in Appendix B.
The syntax of SeqPoW is as follows.

Setup(λ,ψ,T )→pp: On input security parameter λ, step ψ∈
N+ and difficulty T ∈ [1,∞), outputs public parameter pp.

Gen(pp)→(sk,pk): A probabilistic function, which on input
pp, produces a secret key sk and a public key pk.

Init(pp,sk,x)→(S0,π0): On input pp, sk and input x, outputs
initial solution S0 and proof π0. Some constructions may
use pk rather than sk. This also applies to Solve(·) and
Prove(·).

Solve(pp,sk,Si)→(Si+1,bi+1): On input pp, sk and i-th
solution Si, outputs (i+ 1)-th solution Si+1 and result
bi+1∈{0,1}.

Prove(pp,sk,i,x,Si)→πi: On input pp, sk, i, x and Si,
outputs proof πi.

Verify(pp,pk,i,x,Si,πi)→{0,1}: On input pp, pk, i, x, Si
and πi, outputs 1 if Si is a valid solution, otherwise 0.

A tuple (pp,sk,i,x,Si,πi) is honest if (Si,πi) is generated
from evaluating Solve(p, sk,Si−1) and Prove(pp,sk, i,x,Si)
honestly, and is valid if it is honest and bi associated to Si
is 1. SeqPoW satisfies completeness, soundness, hardness and
sequentiality. Completeness ensures that for every honest tuple
(pp,sk, i,x,Si, πi), Verify(pp,pk, i,x,Si, πi) = 1. Soundness
ensures that for every non-honest tuple (pp, sk, i, x, Si, πi),
Verify(pp,pk,i,x,Si,πi)=0. Hardness ensures that given diffi-
culty parameter T , each Solve(·) attempt has the success rate of
1
T , implying that the number of sequential steps towards solv-
ing the puzzle is uniformly random with a mathematical expec-
tion of T . Sequentiality ensures that even with parallel proces-
sors, the fastest way of computing Si is incrementing Solve(·)
for i times, which takes time σ(i ·ψ). Similar to VDFs [22],
sequentiality in SeqPoW also implies unpredictability: without
i sequential Solve(·) invocations towards Si, the probability of
making a correct guess on Si is negligible.

SeqPoW also has an optional property uniqueness, by
which each SeqPoW puzzle only has a single valid solution
Si. Before finding a valid solution Si each Solve(·) attempt
follows the hardness definition, but after finding Si no further
Solve(·) attempt returns a valid solution.

D. Constructions

Let H :{0,1}∗→{0,1}κ be a cryptographic hash function;
G be a cyclic group; HG :{0,1}∗→G be a function mapping
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Setup(λ, ψ, T )

1 : ppVDF =(G, g)←VDF.Setup(λ)

2 : pp←(ppVDF, ψ, T )

3 : return pp
Gen(pp)

1 : (G, g, ψ, T )←pp

2 : Sample random sk∈N
3 : pk←gsk∈G
4 : return (sk, pk)

Init(pp, pk, x)

1 : (G, g, ψ, T )←pp

2 : S0←HG(pk‖x)

3 : return S0

Solve(pp, pk, Si)

1 : (ppVDF, ψ, T )←pp

2 : Si+1←VDF.Eval(ppVDF, Si, ψ)

3 : bi+1←H(pk‖Si+1)≤ 2κ

T
? 1:0

4 : return (Si+1, bi+1)

Prove(pp, pk, i, x, Si)

1 : (ppVDF, ψ, T )←pp

2 : (G, g)←ppVDF

3 : S0←HG(pk‖x)

4 : πVDF←VDF.Prove(ppVDF, S0, Si, i·ψ)

5 : return πVDF

Verify(pp, pk, i, x, Si, πi)

1 : (ppVDF, ψ, T )←pp

2 : (G, g)←ppVDF

3 : S0←HG(pk‖x)

4 : if VDF.Verify(ppVDF, S0, Si, πi, i·ψ)=0 then return 0

5 : if H(pk‖Si)>
2κ

T
then return 0

6 : return 1

(a) SeqPoWVDF.

Setup(λ, ψ, T )

1 : pp←(G, g, ψ, T )

2 : return pp
Gen(pp)

1 : (G, g, ψ, T )←pp

2 : Sample random sk∈N
3 : pk←gsk∈G
4 : return (sk, pk)

Init(pp, pk, x)

1 : (G, g, ψ, T )←pp

2 : S0←HG(pk‖x)

3 : return S0

Solve(pp, pk, Si)

1 : (G, g, ψ, T )←pp

2 : Si+1←S
1

2ψ

i

3 : bi+1←H(pk‖Si+1)≤ 2κ

T
? 1:0

4 : return (Si+1, bi+1)

Prove(pp, pk, i, x, Si)

1 : return ⊥

Verify(pp, pk, i, x, Si, πi)

1 : (G, g, ψ, T )←pp

2 : y←Si

3 : if H(pk‖y)>
2κ

T
then return 0

4 : repeat i times

5 : y←y2
ψ

6 : if H(pk‖y)≤ 2κ

T
then return 0

7 : if HG(pk‖x) 6=y then return 0

8 : return 1

(b) SeqPoWSloth.

Figure 2: Construction of SeqPoW.

an arbitrary string to an element on G; g be a generator of
G; sk be the secret key; and pk=gsk be the public key.

SeqPoW from VDFs (Figure 2a). Let ψ be a step parameter,
x be the input, and T be the difficulty parameter. The prover
runs Init(·), which generates the initial solution S0 =
HG(pk‖x). Then, the prover keeps running Solve(·), which
calculates an intermediate output Si = VDF.Eval(pp,Si−1,ψ)
and checks whether H(pk‖Si) ≤ 2κ

T . If true, then Si is a
valid solution, and the prover runs Prove(·), which outputs
proof πi attesting Si = VDF.Evali(pp, S0, ψ). Note that
Si = VDF.Eval(pp, Si−1, ψ) = VDF.Evali(pp, S0, ψ) =
VDF.Eval(pp, S0, i · ψ) when VDF is self-composable.
The verifier runs Verify(·), which checks 1) whether
Si = Evali(pp, S0, ψ) by running VDF.Verify(ppVDF, pk, i ·
ψ,x,Si,πi), and 2) whether Si satisfies the difficulty T .

Unique SeqPoW from Sloth (Figure 2b). SeqPoWVDF does
not provide uniqueness: the prover can keep incrementing the
ISF to find as many valid solutions as possible. We construct
SeqPoWSloth with uniqueness from Sloth [26], a slow-timed
hash function. In Sloth, the prover calculates the square root
(on a cyclic group G) over the input for t times to get the
output. The verifier calculates the square over the output
for t times to recover the input and checks if the input is
same as the one from the prover. Although the verification
is linear (and thus do not meet the VDF definition [22]),
verification is faster than computing: on cyclic group G,
squaring is O(log|G|) times faster than square rooting. Similar
to SeqPoWVDF, SeqPoWSloth takes each of Si = f(i ·ψ,S0)
as an intermediate output and checks if H(pk‖Si) ≤ 2κ

T . To
make the solution unique, SeqPoWSloth only treats the first
solution satisfying the difficulty as valid. When verifying Si,
if the verifier finds an intermediate output Sj (j<i) satisfying
the difficulty, then Si is considered invalid.

E. Security and efficiency analysis

Security. Appendix C provides full security proofs of the
SeqPoW constructions. The completeness and soundness are
immediate from Sloth and VDFs’ completeness, soundness and
self-composability. By pseudorandomness of HG(·) and se-
quentiality of Sloth and VDFs, Solve(·) outputs unpredictable
solutions. As H(·) is modelled as a random oracle and Solve(·)
produces an unpredictable solution, the probability that the
solution satisfies the difficulty is 1

T , leading to hardness.
The sequentiality and self-composability of Sloth and VDFs
guarantee the sequentiality of the SeqPoW constructions.

VDFs can be instantiated with any cyclic group, including
the RSA group that requires a trusted setup and the class group
without such requirement. The trusted setup is usually con-
ducted by a trusted party or a multi-party protocol [59], [60].

Efficiency (Table II). SeqPoWVDF and SeqPoWSloth employ
repeated squaring on an RSA group and repeated square
rooting on a prime-order group as ISFs, respectively. Let s
be the size (in Bytes) of a group element, and ψ be the step
parameter. Each Solve(·) executes ψ steps of the ISF, and the
prover attempts Solve(·) for T times on average to find a valid
solution. Prove(·) and Verify(·) generate and verify proofs of
ψT consecutive modular squaring operations, respectively.

We analyse SeqPoWVDF with both Wesolowski’s VDF
(Wes19) [25] and Pietrzak’s VDF (Pie19) [24] without
optimisation/parallelisation techniques [24], [25], [61]. Ac-
cording to the existing analysis [62], the proving complexity,
verification complexity and proof size of Wes19 are O(ψT ),
O(logψT ) and s Bytes, respectively; and those of Pie19 are
O(
√
ψT logψT ), O(logψT ) and slog2ψT , respectively. When

ψT = 240 and s = 32 Bytes, the proof sizes of SeqPoWVDF
with Wes19 [25] and with Pie19 [24] are 32 and 1280 Bytes,
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Table II: Efficiency of two SeqPoW constructions.
Solve(·) Prove(·) Verify(·) Proof

size (Bytes)
SeqPoWVDF + Wes19 O(ψ) O(ψT ) O(logψT ) s
SeqPoWVDF + Pie19 O(ψ) O(

√
ψT logψT ) O(logψT ) slog2ψT

SeqPoWSloth O(ψ) 0 O(ψT ) 0

respectively. SeqPoWSloth has the verification complexity of
O(ψT ) and uses the solution itself to represent the proof.

V. RANDCHAIN: DRB FROM SEQPOW

In this section, we build the RANDCHAIN protocol.
Figure 3 and 4 provides the intuition and full specification
of RANDCHAIN, respectively. In RANDCHAIN, participants
jointly maintain a sequence of random outputs as a blockchain,
where each random output is derived from a block (§V-A).
Specifically, participants agree on a unique blockchain
by executing the Nakamoto consensus, which ensures
consistency, liveness, and scalability in synchronous networks
(§V-B). RANDCHAIN composes Nakamoto consensus with
our proposed SeqPoW puzzle to achieve non-parallelisable
mining, guaranteeing the fairness (§V-C). Each random output
is extracted from a block by using a Verifiable Delay Function
(VDF) so that the random output is learned only after the
block becomes irreversible in the blockchain, guaranteeing
the uniform distribution, unpredictability and unbiasibility
(§V-D). Appendix D provides the proofs of all correctness
properties for RANDCHAIN.

A. DRB structure

Each participant pk locally maintains a ledger Ck formed
as a directed acyclic graph (DAG) of blocks. Following
Nakamoto consensus mainChain(·), pk selects the longest
fork in Ck as the main chain MCk. If there are multiple
longest forks at the same length, pk chooses the one it receives
first. MCk is formed as a blockchain, i.e., a totally ordered
sequence of blocks. We denote |MCk| as the length of MCk.

Each block B is of the format B=(h−,h,i,S,pk,π), where
h− is the previous block ID, h is the current block ID, i is the
SeqPoW solution index, S is the SeqPoW solution, pk is the
public key of this block’s creator, and π is the proof that S is a
valid SeqPoW solution on input h−. Each block B is identified
by its ID B.h=H(B.pk‖B.S), and points to a previous block
B− by setting B.h−=B−.h. One can extract a random output
B.R from each block B by using a deterministic function
randomOutput(·), which we will describe later in (§V-D).

B. Synchronising and agreeing on blocks

Each participant pk keeps running SyncRoutine(·) to
synchronise its local ledger Ck with other participants.
Specifically, participant pk keeps receiving blocks from other
participants, verifying them, and adding valid blocks to its
local ledger Ck. Participant pk keeps tracking the main chain
MCk following Nakamoto consensus mainChain(·), and
executes the mining routine MineRoutine(·) on MCk.

Same as PoW-based Nakamoto consensus, RANDCHAIN
achieves consistency and liveness in synchronous networks,
and can tolerate an adversary with mining power α < 1

2 . As
Nakamoto consensus is probabilistic, RANDCHAIN does not

achieve 0-consistency (aka finality). One can deploy existing
finality layer mechanisms [63]–[65] into RANDCHAIN. In
Appendix F3 we analyse two approaches of adding finality to
RANDCHAIN.

RANDCHAIN inherits communication complexity and la-
tency guarantees from Nakamoto consensus. The communi-
cation complexity is O(n) as the only communication is the
leader broadcasting blocks. The latency is tblock + δ, where
tblock is the parameterised block interval and δ is the actual
network delay. Thus, RANDCHAIN achieves scalability.

C. Non-parallelisable mining

RANDCHAIN employs the SeqPoW puzzle for the
mining routine MineRoutine(·). Specifically, participant pk
keeps solving the latest SeqPoW puzzle S derived from
SeqPoW.Init(pp,skk,B

−.h), where pp is the public parameter,
skk is its secret key, and B−.h is the hash of MCk’s last
block. To solve puzzle S, participant pk keeps executing
SeqPoW.Solve(·) until finding a valid solution. With a valid
solution, participant pk constructs a block B, and appends B
to MCk.

RANDCHAIN achieves non-parallelisable mining, leading
to µ-fairness with µ> 1

5 in practice where every node at least
preserves a commodity processor with 2∼3 GHz frequency.
Each participant has a unique input deriving a unique SeqPoW
puzzle, so can only use a single processor for mining. By
SeqPoW’s sequentiality, to accelerate solving SeqPoW puz-
zles, one can only increase the processor’s frequency. While
commodity processors usually achieve 2∼3 GHz frequency,
the most advanced processor achieves the frequency of 8.723
GHz [66], which is hard to improve further due to the voltage
limit [67]. Hence, the fastest processor can mine at most five
times faster than normal processors, leading to µ> 1

5 . The lim-
ited speedup is evidenced by the recent VDF Alliance FPGA
Contest [68]–[70], where optimised VDF implementations are
about four times faster than the baseline implementation.

The adversary can weaken µ to ≥ µ
2 by selfish mining, i.e.,

withholding and publishing blocks adaptively w.r.t. blocks
from honest miners [42]. To defend against selfish mining
attacks, one can deploy existing countermeasures [71]–[73].

D. Extracting a random output from a block

Given block B, randomOutput(·) extracts the random
output B.R via VDF.Eval(pp,B.pk‖B.S,tVDF) and computes
proof B.πR via VDF.Prove(ppVDF, B.pk‖B.S, B.R, tVDF),
where ppVDF and tVDF are VDF’s public parameter and time
parameter known to all participants, respectively. The time
parameter tVDF is chosen so that finishing Eval(·) takes longer
than participants extending (Υ+1) blocks for a Υ-consistent
RANDCHAIN.

The time delay in randomOutput(·) ensures the unbiasi-
bility of RANDCHAIN. If the random output is extracted from
a block instantly, then the adversary can withhold its block
if it does not like the extracted random output, compromising
the unbiasibility. With the time delay of extending (Υ + 1)
blocks, the adversary has to decide whether to broadcast or
withhold its mined block before learning the random output.
After learning the random output, the block either becomes
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Random
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VDF
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Ledger

Ledger

(a) Non-parallelisable mining (b) Nakamoto consensus and random output extraction

Figure 3: The RANDCHAIN protocol. (a) Upon block B`, each participant keeps solving its own SeqPoW puzzle. The participant who
first solves its SeqPoW puzzle (the red one) proposes the next block B`+1 (in red). B`+1 piggybacks B` by including B`’s ID, i.e.,
B`+1.h

−=B`.h. (b) Each participant maintains a local ledger formed as a DAG of blocks. It considers the longest fork of the DAG as the
main chain and mines over it. For each block B`, the random output B`.R is extracted by a VDF that takes longer than nodes extending
(Υ+1) blocks (in this case Υ=1) so that B`.R is learned only after B` becomes irreversible.

mainChain(Ck)

1 : MCk←⊥
2 : foreach fork C∗k of Ck do

3 : if
∣∣C∗k∣∣> |MCk| thenMCk←C∗k

4 : returnMCk

randomOutput(pp, B, tVDF)

1 : (ppVDF, ·, ·)←pp

2 : B.R←VDF.Eval(ppVDF, B.pk‖B.S, tVDF)

3 : B.πR←VDF.Prove(ppVDF, B.pk‖B.S,
4 : B.R, tVDF)

5 : return B.R, B.πR

MainProcedure(pp, skk, pkk)

1 : Synchronise ledger as Ck
// The following two lines read/modify Ck concurrently

2 : MineRoutine(pp, skk, pkk, Ck) in a thread
3 : SyncRoutine(pp, Ck) in a thread

MineRoutine(pp, skk, pkk, Ck)

1 : repeat
2 : MCk←mainChain(Ck)

3 : B
−←MCk[−1]

4 : i←0

5 : S←SeqPoW.Init(pp, skk, B
−
.h)

6 : repeat
7 : if Ck is updated by SyncRoutine(·) then

8 : Repeat line 2-5

9 : S, b←SeqPoW.Solve(pp, skk, S)

10 : i+=1

11 : if b=1 then break
12 : h←H(pkk‖S)

13 : π←SeqPoW.Prove(pp, sk, i, B−.h, S)

14 : B←(B
−
.h, h, i, S, pkk, π)

15 : Append B to MCk after B−

16 : Propagate B

SyncRoutine(pp, Ck)

1 : repeat
2 : Wait for a new block as B

3 : (h
−
, h, i, S, pk, π)←B

4 : // B should point to an existing block

5 : if @B−∈Ck : B−.h=h− then discard B

6 : // B should have a valid ID h

7 : if h 6=H(pk‖S) then discard B

8 : // B should include a valid puzzle solution

9 : if SeqPoW.Verify(pp, pk, i, h−, S, π)=0 then

10 : Discard B

11 : Append B to Ck after block B− where B−.h=h−

12 : Propagate B

Figure 4: Full specification of RANDCHAIN.

irreversible (if the adversary broadcasts the block) or cannot
be accepted anymore (if the adversary withholds the block).

RANDCHAIN satisfies uniform distribution: a λ-bit random
string can be extracted from a block, where λ is SeqPoW
and VDF’s security parameter. RANDCHAIN satisfies unpre-
dictability, as the sequentiality of SeqPoW and VDF implies
their outputs are unpredictable as analysed in §IV-A.

VI. IMPLEMENTATION AND EVALUATION

We implement SeqPoW and RANDCHAIN, and evaluate
their performance. The evaluation shows that all SeqPoW
constructions are practical and RANDCHAIN is indeed scalable
and fair. Specifically, on a cluster of 1024 nodes (each as a
participant), RANDCHAIN can produce a random output every
1.3 seconds (2.3x faster than RandHerd [12] with 1024 nodes,
6.6x faster than HydRand [14] with 128 nodes); utilise constant
bandwidth of about 200 KB/s per node (comparable with
RandHerd with 1024 nodes and HydRand with 128 nodes);
and provide nodes with comparable chance of producing
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Figure 5: Evaluation of SeqPoW constructions.

random outputs. We will make all code and experimental data
publicly accessible after the paper is published.

A. SeqPoW: benchmarks

Implementation. We implement the SeqPoW constructions
in Rust. We use rug [74] for big integer arithmetic, and
implement the RSA group with 1024-bit keys and the
group of prime order based on rug. We implement the
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Table III: Experimental settings and results.
Experimental setting Experimental results

#nodes #machines Deployment Network Latency Net. overhead
RandHerd [12] 1024 32 Datacenter Simulated 3 sec 200 KB/s
HydRand [14] 128 128 Worldwide Real 8.6 sec 180∼310 KB/s
RANDCHAIN 1024 128 Worldwide Real 1.3 sec 200 KB/s

two SeqPoWVDF constructions based on the RSA group,
and SeqPoWSloth based on the group of prime order. Our
implementations strictly follow their original papers [24]–[26].

Experimental setting. For each function, we test ψT
up to 256000, where ψ is the step parameter and T is
the difficulty. The code for benchmarking is based on the
cargo-bench [75] and criterion [76] benchmarking
suites. We specify O3-level optimisation for compilation, and
sample ten executions for each benchmarked function with
a unique set of parameters. All experiments were conducted
on a machine with a 2.2 GHz 6-Core Intel Core i7 Processor
and a 16 GB 2400 MHz DDR4 RAM.

Performance (Figure 5). For all SeqPoW constructions, the
running time of Solve(·) increases linearly with ψT . This is as
expected as Solve(·) is dominated by the ISF. For SeqPoWVDF
with Wes19, Prove(·) takes more time than Solve(·), making it
less suitable for instantiating RANDCHAIN. For SeqPoWVDF
with Pie19, Prove(·) and Verify(·) take negligible time
compared to Solve(·). For SeqPoWSloth, Solve(·) is about
five times slower than Verify(·). Although this is far from
the theoretically optimal value, i.e., log2 |G| = 1024 in our
setting [77], the verification overhead is acceptable for the
use case where random outputs are not generated frequently.

B. RANDCHAIN: end-to-end evaluation

We implement RANDCHAIN and evaluate it on computer
clusters regarding the following metrics:

• Block propagation delay (BPD) is the time taken for
the majority of nodes to receive a block (§VI-B2).

• Block size is the size of a block. It varies w.r.t. blocktime
(i.e., the average time interval between two blocks) as
the VDF proof size increases with the time parameter.
We also estimate the network overhead of propagating
blocks amortised by time (§VI-B3).

• Network overhead is the average bandwidth utilisation,
i.e., the average amount of data transferred in a time
unit, of a node (§VI-B4).

• Decentralisation is the evenness of nodes’ chance of
producing blocks. It is quantified by the distribution of
nodes in terms of the number of blocks they produce on
the main chain (§VI-B5).

Among the metrics, the former three are the empirical re-
sults of scalability (where BPD infers latency and the rest two
infer network overhead); and decentralisation is the empirical
result of fairness. We also compare RANDCHAIN with state-of-
the-art DRBs that have experimental results, including Rand-
Herd [12] and HydRand [14]. Table III summarises the eval-
uation results and comparison with RandHerd and HydRand.

1) Implementation and experimental settings: We
implement RANDCHAIN based on Parity-bitcoin [27],
a Bitcoin implementation in Rust. Each node plays as
a participant of RANDCHAIN. It uses RocksDB [78] for

storage, and Bitcoin’s Wire protocol [79] for the P2P protocol
stack. We adapt the ledger structure, SeqPoW and relevant
message types to RANDCHAIN’s setting specified in §V. Given
the evaluation result in §VI-A, we use Pie19 for instantiating
SeqPoW and extracting random outputs from blocks. The
entire project takes approximately 23000 lines of code
(LoC), where the RANDCHAIN implementation adds/changes
approximately 4500 LoC over Parity-bitcoin. We use
dstat [80] for monitoring system resource utilisation.

We specify O3-level optimisation for compilation, and
deploy the project to clusters with {128, 256, 512, 1024}
nodes on Amazon’s EC2 instances. Specifically, we deploy
{16,32,64,128} t2.micro EC2 instances (1 GB RAM, one
CPU core and 60-80 Mbit/s network bandwidth) in 13 regions
around the globe1, and each instance runs 8 RANDCHAIN
nodes. Each node maintains up to 8 outbound connections
and 125 inbound connections, which is same as Bitcoin’s
setting [79]. When a node starts, it randomly connects to 8
peers, accepts connections from other peers, and starts gossip-
ing messages with them. As mining is not allowed in cloud
computing platforms, we simulate SeqPoW.Solve(·) rather
than actually executing it. For our SeqPoW implementation,
the t2.micro EC2 instance can do squaring operations in
SeqPoW.Solve(·) for 233868 times per second on average. We
test blocktime of {1,5,10} seconds by adjusting the SeqPoW
difficulty. For each group of the experiments, we sample 30
minutes of the execution, collect logs from all nodes, parse the
logs and calculate the metrics. The total size of logs is 1.74 GB.

2) Block propagation delay (BPD): Figure 6 shows the
distribution of BPD for different sizes of clusters. First, with
the increasing number of nodes (from 128 to 1024), the BPD
never exceeds 1.3 seconds. In other words, the system can pro-
duce a random output every 1.3 seconds, which is 2.3x faster
than RandHerd (∼3 seconds on a 1024-node cluster) and 6.6x
faster than HydRand (∼8.6 seconds on a 128-node cluster).
This is expected given the linear communication complexity.

Second, BPD is usually either less than 0.4 second or
more than 0.6 second, but is hardly in-between values. This
implies that a block can reach most nodes within 2 hops: the
two peaks around the saddle of 0.4∼0.6s indicate the average
delays for 1-hop and 2-hop block propagation, respectively.

Third, the average BPD increases slowly with more
nodes. This is consistent with other linear protocols [81].
In linear protocols, the average BPD is proportional to
the average number of intermediate nodes of two random
nodes. In Bitcoin’s setting where each node connects to k
random peers, the network is structured as an Erdos-Renyi
random graph [82], in which two random nodes have O( logn

logk )
intermediate nodes on average.

Last, BPD increases when blocks are produced more
frequently. This is because a t2.micro instance only has
a single processor and limited network capacity, making the
overhead of verifying and propagating blocks non-negligible.

3) Block size: The major part of a block is the SeqPoW
proof that takes s·log2(ψT ) Bytes, where ψT depends on the

1The regions include North Virginia, North California, Oregon, Ohio,
Canada, Mumbai, Seoul, Sydney, Tokyo, Singapore, Ireland, Sao Paulo,
London, and Frankfurt.
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(b) 256 nodes.
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(d) 1024 nodes.

Figure 6: Distribution of block propagation delay (BPD), represented as violin plots. The light blue and dark blue parts indicate the distribution
of BPD when blocks are propagated to 50% and 80% of nodes, respectively.
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Figure 7: Block size, network overhead and decentralisation. (a) Block size and estimated network overhead between two nodes amortised
by time v.s. blocktime. The dark blue increasing line is on the block size and the light blue decreasing line is on the overhead. (b) Network
overhead, quantified as the bandwidth utilisation of each node with different blocktimes. (c) Decentralisation level, visualised as the number of
blocks produced by distinct nodes. The blue and black lines are the kernel density estimation and the closest normal distribution, respectively.

time taken to find a solution and the number of iterations exe-
cuted in a time unit. Recall that the computer can do squaring
operations for 233868 times per second. Given blocktime t,
the SeqPoW proof size is s · log2(233868 ·t)≈ s ·(18+log2t),
and the network overhead between two nodes amortised by
time is s·(18+log2t)

t . Figure 7a shows the relationship between
blocktime, block size and network overhead. When blocktime
is {1,5,10} seconds and s=32 Bytes, the block size is about
{576,1336,1912} Bytes, and the amortised network overhead
is about {576, 267, 191} Bytes/s. When blocktime is 60
seconds (the setting of Drand [83] and the NIST randomness
beacon [84]), the block size is about 3402 Bytes, and the
amortised network overhead is about 57 Bytes/s.

4) Network overhead: Figure 7b shows the bandwidth
utilisation result. It shows that RANDCHAIN utilises
less bandwidth compared to RandHerd and HydRand:
even with blocktime of 1 second, each node utilises
∼200KB/s bandwidth per second, which is comparable with
RandHerd (∼200KB/s on a 1024-node cluster) and HydRand
(180∼310KB/s on a 128-node cluster). The bandwidth utilisa-
tion remains stable with more nodes, as RANDCHAIN is linear.
These two results are as expected since RANDCHAIN is linear.
The inbound and outbound bandwidths are identical, as the
input (i.e., the last block) and the output (i.e., the new block)
are identical in terms of size, leading to identical bandwidth
utilisation. With longer blocktime, the node requires less
bandwidth, as nodes send and receive blocks less frequently.

5) Decentralisation: Figure 7c shows the distribution of
nodes w.r.t. the number of blocks they produce on the main

chain, in the experiment with 1024 nodes and the blocktime of
1 second. The kernel estimated distribution is close to the nor-
mal distribution, meaning that nodes have comparable chance
of producing blocks, similar to RandHerd and HydRand that
are “one-man-one-vote”. The result is consistent with our
experimental setting where nodes use the same processors.

VII. COMPARISON WITH EXISTING DRBS

In this section, we develop a unified evaluation framework
for DRBs, and compare RANDCHAIN with existing DRBs.
Our evaluation shows that RANDCHAIN is the only protocol
that is secure, scalable and fair simultaneously, without
relying on any trusted party.

A. Overview of existing DRBs

DRG-based DRBs. Participants execute the single-shot
Distributed Randomness Generation (DRG) protocol
periodically. DRG can be constructed from various
cryptographic primitives, such as threshold cryptosystems [3],
[8], [9], Verifiable Random Functions (VRFs) [2], [10], [11],
and Publicly Verifiable Secret Sharing (PVSS) [1], [12]–[16].
To relax the network model assumptions, reduce the communi-
cation complexity and/or improve the fault tolerance capacity,
these DRBs usually rely on a centralised dealer [8], [9], [13],
[15] and/or combine techniques such as leader election [1]–[3],
[10]–[12], sharding [3], [12], cryptographic sortition [10],
Byzantine consensus [10], [14] and erasure coding [13], [15].

Other types. In Smart contract (SC)-based DRBs [85], [86],
[91], participants submit their inputs to an external smart
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Table IV: Comparison of RANDCHAIN with existing DRBs.
Protocol System model Correctness Performance

Nam
e

Prim
itiv

es
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el
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lt
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. ca
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ten
cy
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ness
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ness

Unifo
rm

dist
.

Unpred
ict

ab
ilit

y

Unbias
ibilit

y

Pub.
ve

r.

Com
m. co

mpl.

Late
ncy

DRG-based DRBs

Cachin et al. [8] Thr. Sig. Async. Dealer‡ 1/3 3 3 1 3 3 3 3 O(n3) O(δ)
HERB [9] Homo. Thr. Enc. Part. sync. Dealer‡ 1/3 3 3 1 3 3 3 3 O(n) O(δ)
Dfinity [3] VRF + Thr. Sig. Sync. - 1/3 3 3 1 3 3 7† 3 O(cn)�¶ O(∆)∼∞¶

Ouro. Praos [2] VRF Part. sync. - 1/2 3 3 1 3 3 7† 3 O(n)¶ O(∆)∼∞¶
GLOW [11] VRF Sync. - 1/3 3 3 1 3 3 7† 3 O(n)¶ O(δ)∼∞¶

Algorand [10] VRF Sync. - 1/3 3 3 1 3 3 7† 3 O(cn)�¶ O(∆)∼∞¶
Ouroboros [1] PVSS Sync. - 1/2 3 3 1 3 3 3 3 O(n3) O(∆)
SCRAPE [13] PVSS Part. sync. Dealer‡ 1/2 3 3 1 3 3 3 3 O(n3) O(δ)

RandShare [12] PVSS Async. - 1/3 3 3 1 3 3 3 3 O(n3) O(δ)
RandHound [12] PVSS Sync. - 1/3 3 3 1 3 3 7† 3 O(c2n)�¶ O(∆)∼∞¶
RandHerd [12] PVSS Sync. Dealer‡ 1/3 3 3 1 3 3 3 3 O(c2logn)� O(δ)
HydRand [14] PVSS Sync. - 1/3 3 3 1 3 3 3 3 O(n2) O(∆)
Albatross [15] PVSS Part. sync. Dealer‡ 1/2 3 3 1 3 3 3 3 O(n) O(δ)

Kogias et al. [16] HAVSS Async. - 1/3 3 3 1 3 3 3 3 O(n4) O(δ)

SC-based DRBs RanDAO [85] VDF Part. sync.x Blockchainx 1/2x 3 3 1 3 3 3 3 O(n) tblock +δ
Yakira et al. [86] Escrow-DKG Part. sync.x Blockchainx 1/3x 3 3 1 3 3 3 3 O(n) tblock +δ

ISF-based DRBs
Unicorn [26] Sloth Async. Setup (n-1)/n 3 3 →0⊗ 3 3 3 3 O(n) Any +δ

Ephraim et al. [87] Continuous VDF Async. Setup (n-1)/n 3 3 →0⊗ 3 3 3 3 O(n) Any +δ
RandRunner [35] Trapdoor VDF Async. Setup 1/2 3 3 1 3 7? 3 3 O(n)∼O(n2) Any +δ

DRBs from ext. entr.
Clark et al. [88] Rand. extractors Async. Data src. (n-1)/n 3 3 - 3 3 3 7q O(n) Any +δ

Bonneau et al. [89] Rand. extractors Async.x Blockchainx (n-1)/nx 3 3 →0⊗ 3 3 3 7q O(n) tblock +δ
Bünz et al. [90] Proof-of-Delay Async.x Blockchainx (n-1)/nx 3 3 →0⊗ 3 3 3 7q O(n) tblock +δ

This work RANDCHAIN SeqPoW +
Nak. consensus

Sync. - 1/2 3 3 > 1
5

3 3 3 3 O(n) tblock +δ

‡ The analysis assumes the dealer is a trusted third party. While the dealer can be implemented in a distributed manner [17], it introduces extra communication overhead.
† The corrupted leader can withhold the random output and enforce participants to start a new round, as analysed in [14], [15].
� We use c to denote the size of shards in Dfinity [3], RandHound and RandHerd [12], and the size of the committee in Algorand [10].
¶ The corrupted leader can send the random output and advance the round for a subset of participants, so that participants are executing different rounds. The DRB requires an
extra round synchronisation protocol that suffers from either exponential latency [20] or worst-case communication complexity of ≥O(n2) [18], [19].
? The adversary can always corrupt leaders and produce random outputs efficiently via the trapdoor.
q Entropy generated by the external source is not verifiable.
⊗ In Unicorn and Ephraim et al., the participant with the fastest processor can always propose random outputs earlier than other participants. In DRBs with PoW-based blockchains
as external entropy, mining can be accelerated by using parallelism. Both cases weaken the fairness degree to near zero.
x These DRBs are usually built upon public blockchains. When considering the public blockchain as a part of the DRB, the system model will also respect that of the public
blockchain. For example, the DRB may be built upon Ethereum, which requires synchronous networks and fault tolerance capacity α< 1

2
.

contract, which combines them to a single random output. In
DRBs from external entropy, participants periodically extract
randomness from real-world entropy, e.g., real-time financial
data [88] and public blockchains [89], [90], [92]. In Iteratively
sequential function (ISF)-based DRBs [26], [35], [87], partic-
ipants use intermediate outputs of an ISF as random outputs,
and use succinct proofs for the ISF to make outputs verifiable.

B. Evaluation framework for DRBs

We extend our model in §II to build an evaluation
framework for DRBs. Apart from synchronous networks
in §II-A, the framework additionally considers partially
synchrony [93] where messages are delivered within a known
finite time-bound ∆ after an unknown Global Stabilisation
Time (GST) and asynchrony where messages are delivered
without a known time bound. Apart from system model aspects
in §II-A, the framework also concerns trust assumptions that
some proposals assume in order to guarantee correctness
properties. Apart from the correctness properties in §II-B,
the framework also concerns fairness and public verifiability:
whether a random output is publicly verifiable.

C. Evaluation

Table IV summarises the evaluation results. Let ∆ be
the network latency bound in the synchrony period, δ be the
actual network delay, and GST be the global stabilisation time.

System model. Most DRG-based DRBs employ synchronous
leader election protocols, except for the following proposals.

Cachin et al., RandShare and Kogias et al. employ randomised
common coin techniques to achieve asynchrony. Ouroboros
Praos allows “empty slots” (where participants produce no
block) when no leader is elected before GST, and guarantees
an elected leader after GST, leading to partial synchrony.
HERB, SCRAPE, and Albatross employ a dealer who relays
all messages and proceeds the protocol whenever receiving
enough shares, which is guaranteed after GST, leading to
partial synchrony. These DRBs have to trust the dealer, oth-
erwise a corrupted dealer can selectively multicast messages
to allow a subset of nodes to predict random outputs, or
withhold messages to bias random outputs. While the dealer
can be implemented in a distributed manner [17], it introduces
extra communication overhead. SC-based DRBs rely on a
permissionless blockchain to achieve partial synchrony. The
blockchain is assumed to be trusted, otherwise a corrupted
blockchain can censor transactions to bias random outputs,
which is known as the Miner Extractable Value (MEV) is-
sue [94]. ISF-based DRBs and DRBs from external entropy
proceed as long as a single participant is honestly executing
the ISF or sampling the entropy, except for RandRunner which
requires a reliable broadcast with fault tolerance degree α< 1

2 .
ISFs require a trusted setup, otherwise the adversary who pre-
viously knows the seed can learn random outputs earlier than
other participants. The entropy source has to be trusted, other-
wise the adversary can manipulate the entropy and bias random
outputs. In DRBs based on permissionless blockchains, the
blockchains usually employ Nakamoto-style consensus and
thus assume synchronous networks. If the blockchain-based
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DRBs allow nodes to run a blockchain protocol on their own,
then it incurs more communication overhead.

Correctness properties. All DRG-based DRBs achieve
consistency and liveness. Note that DRG-based DRBs
define liveness as termination (where correct participants
eventually learn the random output at the end of each
round), and our evaluation of DRG-based DRBs follows such
definition. All DRBs achieve the ideal fairness, i.e., µ = 1,
except for DRBs from PoW-based blockchains [89], [90],
Unicorn [26], Ephraim et al. [87] and RANDCHAIN. DRBs
from PoW-based blockchains allow accelerating mining by
parallelism. For Unicorn and Ephraim et al., the participant
with the fastest processor can always propose random
outputs earlier than other participants. Both cases weaken
the fairness degree to near zero. RANDCHAIN achieves
µ> 1

5 by making the mining process unpredictable [41], [58]
and non-parallelisable, as analysed in §V-B-V-C. All DRBs
satisfy uniform distribution and unpredictability, except for
RandRunner [35] where the adversary can keep corrupting
leaders and computing random outputs efficiently via the
trapdoor, breaking unpredictability. In Dfinity, Ouroboros
Praos, GLOW, Algorand and RandHound, the corrupted leader
can withhold the random output and enforce participants to
start a new round, breaking the unbiasibility, as analysed
in [14], [15]. DRBs from external entropy do not satisfy public
verifiability, as the external entropy is not publicly verifiable.

Performance metrics. In all dealer-less DRG-based DRBs,
either the leader election, view change or PVSS protocol
requires the all-to-all broadcast operations, leading to at least
O(n2) communication complexity. To reduce communication
complexity, HERB, RandHerd and Albatross employ a dealer
to relay messages; GLOW allows participants to determine a
unique leader locally given the last random output; Dfinity,
RandHound and RandHerd apply sharding techniques to
divide participants into different shards; Algorand samples a
subset of participants to execute the protocol; and SC-based
DRBs rely on a smart contract that relays all messages.
RandRunner is linear in the best case, but requires reliable
broadcasts with O(n2) communication complexity in the
worst case. The other two ISF-based DRBs and DRBs from
external entropy achieve O(n) communication complexity.

Asynchronous DRG-based DRBs terminate within O(δ),
as asynchronous networks do not have ∆. In HERB, SCRAPE,
RandHerd and Albatross, the random output is produced
once the dealer receives enough shares, leading to the latency
of O(δ). In Ouroboros and HydRand, the leader election
terminates in O(∆). In GLOW, when the leader is correct,
the latency is O(δ). When the leader is corrupted, then it can
deliver random outputs and advance the round for a subset
of participants, so that participants will execute different
rounds. To re-synchronise the round, nodes have to execute an
extra round synchronisation protocol with either exponential
latency (by using the time doubling mechanisms [20]) or
at least O(n2) worst-case communication complexity (by
using the broadcast-based mechanisms [18], [19]). In Dfinity,
Ouroboros Praos, Algorand, and RandHound, the leader
election terminates within O(∆), and a corrupted leader can
cause the round synchronisation issue similar in GLOW.
SC-based DRBs and DRBs from blockchain entropy achieve
the latency of the parameterised block interval tblock plus δ.

ISF-based DRBs and DRBs from other entropy can achieve
any latency plus δ, according to the frequency of sampling
intermediate outputs and entropy, respectively.

VIII. CONCLUSION

In this paper, we identified a new design space of
Decentralised Randomness Beacon (DRB) protocols where
participants are competitive, and constructed the first DRB
protocol RANDCHAIN that belongs to this class. RANDCHAIN
overcomes the scalability limit in the existing DRB design
where participants are collaborative. The theoretical analysis
and experimental evaluation show that RANDCHAIN is secure,
scalable and fair without any trusted party.
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APPENDIX

A. Definition of VDF

We present the formal definition of Verifiable Delay
Functions (VDFs) [22], [24], [25].

Definition 7 (Verifiable Delay Function). A Verifiable Delay
Function VDF is a tuple of four algorithms

VDF=(Setup,Eval,Prove,Verify)

Setup(λ)→pp: On input security parameter λ, outputs public
parameter pp. Public parameter pp specifies an input
domain X and an output domain Y . We assume X is
efficiently sampleable.

Eval(pp,x,t)→y: On input public parameter pp, input x∈X ,
and time parameter t∈N+, produces output y∈Y .

Prove(pp,x,y,t)→π: On input public parameter pp, input x,
output y, and time parameter t, outputs proof π.

Verify(pp,x,y,π,t)→{0,1}: On input pp, x, y, π and t,
outputs 1 if y is a correct evaluation, otherwise 0.

VDF satisfies the following properties

• Completeness: For all λ, x and t,

Pr

[
Verify(pp,x,y,

π,t)=1

∣∣∣∣∣ pp←Setup(λ)
y←Eval(pp,x,t)

π←Prove(pp,x,y,t)

]
=1

• Soundness: For all λ and adversary A,

Pr

[
Verify(pp,x,y,π,t)=1
∧Eval(pp,x,t) 6=y

∣∣∣∣ pp←Setup(λ)
(x,y,π,t)←A(pp)

]
≤negl(λ)
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• σ-Sequentiality: For any λ, x, t, A0 which runs in time
O(poly(λ, t)) and A1 which controls any polynomial
amount of processors and runs in less than time σ(t),

Pr

[
Eval(x,y,t)=y

∣∣∣∣∣ pp←Setup(λ)
A1←A0(λ,t,pp)

y←A1(x)

]
≤negl(λ)

We formally define self-composability for VDFs as follows.

Definition 8 (Self-Composability). A VDF
(Setup, Eval, Prove, Verify) satisfies self-composability if
for all λ, x, (t1,t2),

Pr

[
Eval(pp,x,t1+t2)
=Eval(pp,y,t2)

∣∣∣∣ pp←Setup(λ)
y←Eval(pp,x,t1)

]
=1

Lemma 1. If a VDF (Setup, Eval, Prove, Verify) satisfies
self-composability, then for all λ, x, (t1,t2),

Pr

 Verify(pp,x,y′,
π,t1+t2)=1

∣∣∣∣∣∣∣
pp←Setup(λ)
y←Eval(pp,x,t1)
y′←Eval(pp,y,t2)

π←Prove(pp,x,y′,t1+t2)

=1

B. Definition of SeqPoW

We present the formal definition of Sequential Proof-of-
Work (SeqPoW).

Definition 9 (Sequential Proof-of-Work (SeqPoW)). A
Sequential Proof-of-Work SeqPoW is a tuple of algorithms

SeqPoW=(Setup,Gen,Init,Solve,Verify)

Setup(λ,ψ,T )→pp: On input security parameter λ, step
ψ∈N+ and difficulty T ∈ [1,∞), outputs public parameter
pp. Public parameter pp specifies an input domain X , an
output domain Y , and a cryptographically secure hash
function H :Y→X , where X is efficiently sampleable.

Gen(pp)→(sk,pk): A probabilistic function, which on input
public parameter pp, produces a secret key sk ∈ X and
a public key pk∈X .

Init(pp,sk,x)→(S0,π0): On input public parameter pp, secret
key sk, and input x∈X , outputs initial solution S0 ∈Y
and proof π0. Some constructions may use public key
pk as input rather than sk. This also applies to Solve(·)
and Prove(·).

Solve(pp,sk,Si)→(Si+1,bi+1): On input public parameter
pp, secret key sk, and i-th solution Si ∈ Y , outputs
(i+1)-th solution Si+1∈Y and result bi+1∈{0,1}.

Prove(pp,sk,i,x,Si)→πi: On input public parameter pp,
secret key sk, i, input x, and i-th solution Si, outputs
proof πi.

Verify(pp,pk,i,x,Si,πi)→{0,1}: On input pp, pk, i, x, Si,
and πi, outputs 1 if Si is a valid solution, otherwise 0.

We define honest tuples and valid tuples as follows.

Definition 10 (Honest tuple). A tuple (pp,sk, i,x,Si,πi) is
(λ,ψ,T )-honest if and only if for all pp←Setup(λ,ψ,T ), the
following holds:

• i=0 and (S0,π0)← Init(pp,sk,x), and

• ∀i ∈ N+, (Si, bi) ← Solve(pp, sk, Si−1)
and πi ← Prove(pp, sk, i, x, Si), where
(pp,sk,i−1,x,Si−1,πi−1) is (λ,ψ,T )-honest.

Definition 11 (Valid tuple). For all λ, ψ, T , and pp ←
Setup(λ,ψ,T ), a tuple (pp,sk,i,x,Si,πi) is (λ,ψ,T )-valid if

• (pp,sk,i,x,Si,πi) is (λ,ψ,T )-honest, and

• Solve(pp,sk,Si−1)=(·,1)

SeqPoW should satisfy completeness, soundness, hardness
and sequentiality, plus an optional property uniqueness.

Definition 12 (Completeness). A SeqPoW scheme satisfies
completeness if for all λ,ψ,T ,

Pr

 Verify(pp,pk,i,
x,Si,πi)=1

∣∣∣∣∣∣∣
pp←Setup(λ,ψ,T )
(sk,pk)←Gen(pp)
(pp,pk,i,x,Si,πi)
is (λ,ψ,T )-valid

=1

Definition 13 (Soundness). A SeqPoW scheme satisfies
soundness if for all λ,ψ,T ,

Pr

 Verify(pp,pk,i,
x,Si,πi)=1

∣∣∣∣∣∣∣
pp←Setup(λ,ψ,T )
(sk,pk)←Gen(pp)
(pp,pk,i,x,Si,πi)

is not (λ,ψ,T )-valid

≤negl(λ)

Definition 14 (Hardness). A SeqPoW scheme satisfies
hardness if for all (λ,ψ,T )-honest tuple (pp,sk,i,x,Si,πi),∣∣∣∣Pr

[
bi+1 =1

∣∣∣∣ (Si+1,bi+1)←
Solve(pp,sk,Si,πi)

]
− 1

T

∣∣∣∣≤negl(λ)

Definition 15 (σ-Sequentiality). A SeqPoW scheme satisfies
σ-sequentiality if for all λ, ψ, T , i, x, A0 which runs in less
than time O(poly(λ,ψ, i)) and A1 which runs in less than
time σ(i·ψ) with at most poly(λ) processors,

Pr

 (pp,sk,i,x,Si,πi)
is (λ,ψ,T )-honest

∣∣∣∣∣∣∣∣∣
pp←Setup(λ,ψ,T )
(sk,pk)←Gen(pp)
A1←A0(pp,sk)
Si←A1(i,x)

πi←Prove(pp,sk,i,x,Si)


≤negl(λ)

Definition 16 (Uniqueness (optional)). A SeqPoW scheme
satisfies uniqueness if for any two (λ, ψ, T )-valid tuples
(pp,sk,i,x,Si,πi) and (pp,sk,i,x,Sj ,πj), i=j holds.

C. Security proofs for SeqPoW

We formally prove the security guarantee of two SeqPoW
constructions.

Lemma 2. SeqPoWVDF satisfies completeness.

Proof: Assuming a (λ,ψ,T )-valid tuple (pp,sk,i,x,Si,πi),
by completeness and Lemma 1, VDF.Verify(·) will pass. As
hash functions are deterministic, difficulty check will pass.
Therefore,

SeqPoWVDF.Verify(pp,pk,i,x,Si,πi)=1
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Lemma 3. SeqPoWVDF satisfies soundness.

Proof: We prove this by contradiction. Assuming a tuple
(pp,sk,i,x,Si,πi) that is not (λ,ψ,T )-valid and

SeqPoWVDF.Verify(pp,pk,i,x,Si,πi)=1

By soundness and Lemma 1, if (y, y+, π+, ψ) is generated
by A, VDF.Verify(·) will return 0. As hash functions are
deterministic, if Si> 2κ

T , difficulty check will return 0. Thus,
if (pp,sk,i,x,Si,πi) is not (λ,ψ,T )-valid, then the adversary
can break soundness. Thus, this assumption contradicts
soundness.

Lemma 4. SeqPoWVDF satisfies hardness.

Proof: We prove this by contradiction. Assuming∣∣∣∣Pr

[
bi+1 =1

∣∣∣∣ Si+1,bi+1←
Solve(pp,sk,T,Si)

]
− 1

T

∣∣∣∣>negl(λ)

By sequentiality, the value of Si+1 is unpredictable before
finishing Solve(·). By pseudorandomness of hash functions,
H(pk‖Si+1) is uniformly distributed, and the probability
that H(pk‖Si+1)≤ 2κ

T is 1
T with negligible probability. This

contradicts the assumption.

Lemma 5. SeqPoWVDF does not satisfy uniqueness.

Proof: By hardness, each of Si has the probability 1
T

to be a valid solution. As i can be infinite, with (1 − ε)
probability where ε is negligible, there exists more than one
honest tuple (pp,sk,i,x,Si,πi) such that H(pk‖Si)≤ 2κ

T .

Lemma 6. If the underlying VDF satisfies σ-sequentiality,
then SeqPoWVDF satisfies σ-sequentiality.

Proof: We prove this by contradiction. Assuming there
exists A1 which runs in less than time σ(i·ψ) such that

Pr

 (pp,sk,i,x,Si,πi)
∈H

∣∣∣∣∣∣∣∣∣
pp←Setup(λ,ψ,T )

(sk,pk)
R←Gen(pp)

A1←A0(λ,pp,sk)
Si←A1(i,x)

πi←Prove(pp,sk,i,x,Si)


By σ-sequentiality, A1 cannot solve VDF.Eval(ppVDF, y, ψ)
within σ(ψ). By Lemma 1, Si can and only can be computed
by composing VDF.Eval(ppVDF,y,ψ) for i times, which cannot
be solved within σ(i·ψ). This contradicts the assumption.

The completeness, soundness, hardness and sequentiality
proofs of SeqPoWSloth are identical to SeqPoWVDF’s. We
prove SeqPoWSloth satisfies uniqueness below.

Lemma 7. SeqPoWSloth satisfies uniqueness.

Proof: We prove this by contradiction. Assuming
there exists two (λ, ψ, T )-valid tuples (pp, sk, i, x, Si, πi)
and (pp, sk, i, x, Si, πi) where j < i. According
to SeqPoWSloth.Solve(·), we have H(pk‖Si) ≤ 2κ

T

and H(pk‖Sj) ≤ 2κ

T , and initial difficulty check in
SeqPoWSloth.Verify(·) will pass. However, in the for
loop of SeqPoWSloth.Verify(·), if Si is valid, then verification
of Sj will fail. Then, SeqPoWSloth.Verify(·) returns 0, which
contradicts the assumption.

D. Security proofs for RANDCHAIN

We prove RANDCHAIN (denoted as ΠRandChain

throughout the analysis) achieves all correctness properties
defined in §II when the network is synchronous and the
adversary can corrupt α< 1

2 of participants. Let β=1−α.

Consistency and liveness. ΠRandChain satisfies consistency
and liveness when the network is synchronous and the
adversary can corrupt α < 1

2 participants in the system. The
analysis is identical to PoW-based Nakamoto consensus,
where the adversary with mining rate α is competing with
correct nodes with mining rate β=1−α.

Uniform distribution. We prove that each block derives
a λ-bit uniformly distributed random string, where λ is the
security parameter of SeqPoW and VDF.

Lemma 8. ΠRandChain satisfies uniform distribution.

Proof: Each random output B.R of ΠRandChain is
extracted from a block B via the VDF. By VDF’s sequentiality,
each VDF output contains non-negligible entropy that is
unpredictable. A hash function can be applied to the VDF
output to extract a λ-bit uniform random string [22].

Unpredictability. In the prediction game, the (`+1)-th block
is either produced by correct participants or the adversary’s
participants. If the adversary’s advantage is negligible for
both cases, then ΠRandChain satisfies unpredictability. When
the (`+ 1)-th block is produced by correct participants, the
adversary’s best strategy is guessing, leading to negligible
advantage. When the (` + 1)-th block is produced by the
adversary’s participants, the adversary’s best strategy is
to produce as many blocks as possible before receiving
a new block from the correct participants. First, consider
ΠRandChain using SeqPoW without uniqueness.

Lemma 9. Assuming all messages are delivered instantly
and participants agree on a blockchain of length `. If the
(`+1)-th block is produced by a correct participant, then the
adversary’s advantage on the prediction game is 1

2κ .

If the next output is produced by the adversary’s
participants, the adversary’s best strategy is to produce as
many blocks as possible before receiving a new block from
the correct participants. First, consider ΠRandChain using
SeqPoW without uniqueness.

Lemma 10. Consider ΠRandChain using SeqPoW without
uniqueness. Assuming all messages are delivered instantly and
participants agree on a blockchain of length `. If the (`+1)-th
block is produced by the adversary, then the adversary’s
advantage on the prediction game is k

2κ with probability αk ·β.

Proof: The probability that the adversary and correct
participants mine the next block are α and β, respectively.
Note that α≤ 1

2 for satisfying consistency, and α+β=1.

Let Vk be the event that “the adversary mines k blocks at
height (`+1) before correct participants mine a block at height
(`+1)”. When SeqPoW is not unique, a participant can mine
unlimited number of blocks after a single block. Thus, we have

Pr [Vk ]=αk ·β
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When Vk happens, the adversary’s advantage is k
2κ .

Therefore, with probability αk ·β, the adversary mines k
blocks before correct participants mine a block, leading to the
advantage of k

2κ .

Then, we analyse ΠRandChain using SeqPoW with
uniqueness. Without the loss of generality, we assume all
participants share the same mining rate.

Lemma 11. Consider ΠRandChain using SeqPoW with
uniqueness. Assuming all participants share the same mining
rate, all messages are delivered instantly and participants
agree on a blockchain of length `. If the (`+ 1)-th block is
produced by the adversary, then the adversary’s advantage
on the prediction game is k

2κ with probability Pr [V ′k ], where

Pr [V ′k ]=

k−1∏
i=0

(αn−i)
(αn−i)+βn

·β

Proof: Similar to Lemma 10, the adversary and the correct
participants control mining rate α and β, respectively. When
all participants share the same mining rate, the adversary and
the correct participants control αn and βn participants, respec-
tively. Let V ′k be the event that “the adversary mines k blocks at
height (`+1) before correct participants mine a block at height
(`+1)”, where k ≤ αn. By uniqueness, each participant can
only mine a single block at height (`+1), and the adversary
can mine at most αn blocks at height (`+1). Then, we have

Pr [V ′0 ]=β (1)
Pr [V ′1 ]=α·β (2)

Pr [V ′2 ]=
αn−1
αn α

αn−1
αn α+β

·α·β (3)

... (4)

Pr [V ′k ]=

k−1∏
i=0

αn−i
αn α

αn−i
αn α+β

·β (5)

=
k−1∏
i=0

(αn−i)
(αn−i)+βn

·β (6)

When V ′k happens, the adversary’s advantage is k
2κ .

Therefore, with probability Pr [V ′k ]=
∏k−1
i=0

(αn−i)
(αn−i)+βn ·β, the

adversary mines k blocks before correct participants mine a
block, leading to the advantage of k

2κ (where k≤αn).

Remark 1. The adversary’s advantage in ΠRandChain with
unique SeqPoW is always smaller than in ΠRandChain with
non-unique SeqPoW. That is, for every k, Pr [V ′k ]<Pr [Vk ].
Given k, we have

Pr [V ′k ]

Pr [Vk ]
=

∏k−1
i=0

(αn−i)
(αn−i)+βn ·β
αk ·β

(7)

=

∏k−1
i=0

(αn−i)
(αn−i)+βn

αk
(8)

As 0≤ i<αn, it holds that
Pr [V ′k ]
Pr [Vk ]

<1 for all k.

Unbiasibility. ΠRandChain achieves unbiasibility by realising
the output-independent-abort notion [36]. With a VDF with
time parameter long than a new block becoming irreversible,
the adversary has to decide whether to broadcast or withhold
a block before learning the random output.

Lemma 12. ΠRandChain satisfies unbiasibility.

Proof: The proof is by contradiction. Assuming
participants agree on an `-long blockchain, and the adversary
learns the random output B`+1.R in the (`+1)-th block B`+1

when every correct participant’s main chain contains less
than (`+ Υ + 1) blocks, where Υ is the consistency degree.
Recall that extracting B`+1.R from B`+1 is by evaluating a
VDF with a time parameter longer than participants extending
(Υ + 1) blocks on the blockchain. By VDF’s sequentiality,
to learn B`+1.R, the adversary has to learn B`+1 first. By
SeqPoW’s sequentiality, the adversary can learn B`+1 only
after learning its previous block B`, which is already agreed
by participants. Thus, the adversary extracts B`+1.R from
B`+1 only after a correct participant grows its main chain
from ` blocks to (`+Υ+1) blocks if the adversary withholds
B`+1, and to (`+ Υ + 2) blocks if the adversary publishes
B`+1, leading to a contradiction to the assumption. Therefore,
ΠRandChain achieves unbiasibility.

E. Details of existing DRBs

We categorise existing DRBs into four types, namely
Distributed Randomness Generation (DRG)-based DRBs,
Smart contract (SC)-based DRBs, DRBs from external
entropy, and Iteratively sequential function (ISF)-based DRBs.

DRG-based DRBs. Participants execute the single-shot DRG
protocol periodically. DRG can be constructed from various
cryptographic primitives, such as threshold cryptosystems [3],
[8], [9], Verifiable Random Functions (VRFs) [2], [10], [11],
and Publicly Verifiable Secret Sharing (PVSS) [1], [12]–[16].

Cachin et al. [8], Dfinity [3] are constructed from threshold
signatures, and HERB [9] is constructed from homomorphic
threshold encryption. Cachin et al. and HERB assume a
trusted dealer who relays all messages, and Dfinity allows
participants to decide a leader locally according to the last
random output. To work in asynchronous networks, Cachin
et al. employs common coin techniques where participants
share a unique input (e.g., the round number). To reduce
communication complexity, Dfinity divides participants into
different shards and avoids all-to-all broadcast operations.

Ouroboros Praos [2], Algorand [10] and GLOW [11] are
constructed from VRFs. In these designs, participants first
execute a leader election protocol to determine a leader. In
Ouroboros Praos and Algorand, the leader executes VRF over
the current blockchain state to produce the random output
solely. In GLOW, participants jointly execute the Distributed
VRF (DVRF) over the last random output to produce the cur-
rent random output, and all messages are relayed by the leader.

In PVSS-based DRG protocols (Ouroboros [1], Rand-
Hound/RandHerd [12], SCRAPE [12], HydRand [14], Alba-
tross [15], Kogias et al. [16]), each participant chooses a local
random input and uses PVSS to share it to other participants,
aggregates all received shares on different random inputs into
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a single one, broadcasts aggregated shares, and aggregating
received shares again to recover the final random output. To
tolerate corrupted participants, HydRand, RandHound and
RandHerd enforce participants to execute consensus to agree
on a subset of shares; and SCRAPE and Albatross use erasure
codes to encode shares. To reduce communication complexity,
RandHound and RandHerd apply sharding techniques similar
to Dfinity; and SCRAPE and Albatross employ a trusted
dealer relaying messages. To tolerate network asynchrony,
Kogias et al. employs an asynchronous PVSS variant.

SC-based DRBs. Participants employ a smart contract as
the bulletin board. RANDAO [85] allows anyone to submit
their random inputs to the smart contract, and the smart
contract combines submitted inputs to a single random output.
Yakira et al. [86] construct SC-based DRBs from Escrow
Distributed Key Generation (DKG) [91], a DKG variant with
game-theoretical security against rational adversaries.

DRBs from external entropy. Participants periodically
extract randomness from real-world entropy, e.g., real-time
financial data [88] and public blockchains [89], [90], [92].

ISF-based DRBs. Participants use intermediate outputs of
an ISF as random outputs, and succinct proofs for the ISF
to make outputs verifiable. Such ISFs include Sloth [26] and
Ephraim et al. [87]. RandRunner [35] extends this paradigm
by allowing participants to execute the ISF in turn.

F. Limitations and resolutions

We discuss three limitations and the corresponding
resolutions for RANDCHAIN, including the energy-efficiency,
churn tolerance and finality support. We consider the concrete
resolutions and analysis as future work.

1) Energy efficiency: As RANDCHAIN requires all
nodes to solve SeqPoW puzzles to produce a random output,
RANDCHAIN seems to be less energy-efficient than existing
DRG-based DRBs. In fact, whether RANDCHAIN is less
energy-efficient than existing DRG-based DRBs remains
arguable. In terms of communication, RANDCHAIN costs
strictly less energy than DRG-based DRBs, which require at
least O(n2) communication complexity. The energy cost of
communication is not always less than that of computation,
as shown by existing literature [96]. In terms of computation,
it remains arguable whether computing a random output
through threshold cryptographic primitives (which can involve
computationally intensive operations such as pairing, Lagrange
interpolation, and Zero Knowledge Proofs) is more energy-
efficient than non-parallelisable mining, where every node
executes a single SeqPoW instance. In addition, with shorter
block intervals, the energy cost by computing a random output
in RANDCHAIN reduces linearly, while that in collaborative
DRBs remains constant. We consider the energy efficiency
analysis and improvement of RANDCHAIN as future work.

2) Churn tolerance: Similar to existing DRBs, RAND-
CHAIN does not tolerate churn, i.e., nodes joining and leaving.
However, with little modifictaions, RANDCHAIN can toler-
ate churn like PoW-based consensus protocols. To tolerate
churn [97], PoW-based blockchains adjust difficulty parame-
ters adaptively to the rate of new blocks. In RANDCHAIN, the

difficulty adjustment mechanism can use the number i of iter-
ations running SeqPoW.Solve(·) to infer the historical block
rate. If historical values of i are large, then this means that
mining is too hard and the difficulty should be reduced, and
vice versa. We consider a concrete construction and analysis
on the difficulty adjustment mechanism as future work.

3) Finality: Due to the probabilistic Nakamoto consensus,
RANDCHAIN does not achieve finality, and an appended
block may be reverted later. A block being reverted does
not lead to financial loss, as the random output is revealed
only after the block becomes stable, guaranteed by the
unbiasibility property. However, when a block is reverted,
some randomness-based applications may abort the execution.
We consider two approaches to achieve finality, namely
the quorum mechanism and herding-based consensus, and
consider concrete constructions and analysis as future work.

Quorum mechanism. Quorum [98] is the minimum number
of votes that a proposal has to obtain for being agreed by
nodes. A vote is usually a digital signature with some metadata,
and a quorum of votes is called a quorum certificate. The quo-
rum size is n−f , where n and f be the number of nodes and
faulty nodes in the system, respectively. Achieving agreement
in synchronous networks and partially synchronous networks
require n≥2f+1 and n≥3f+1, respectively [93], [98].

RANDCHAIN can employ the quorum mechanism as fol-
lows. A node signs a block to vote it. A node’s view is
represented as the latest block hash. Nodes proactively propa-
gate their votes, i.e., signatures on blocks. A node finalises
a block if collecting a quorum certificate, i.e., ≥ 2f + 1
votes, on this block. The fault tolerance assumption changes to
n≥3f+1. RANDCHAIN still keeps Nakamoto consensus as a
fallback solution. If there are multiple forks without quorum
certificates, nodes mine on the longest fork. A block can
be considered finalised with a sufficiently long sequence of
succeeding blocks, even without a quorum certificate.

Herding-based consensus. Herding is a social phenomenon
where people make choices according to the choices of other
people. Herding-based consensus allows nodes to decide
proposals according to neighbour nodes’ votes only, rather
than a quorum of votes. Existing research [64], [99] shows
that, herding-based consensus can achieve agreement with
overwhelming probability in a short time period.

RANDCHAIN can employ herding-based consensus as fol-
lows. Upon a new block, nodes execute a herding-based
consensus on it. If a block is the only block in a long
time period, then nodes will agree on this block directly. If
there are multiple blocks within a short time period, then
nodes will agree on the most popular block among them
with overwhelming probability. This approach has also been
discussed in Bitcoin Cash community, who seeks to employ
Avalanche [64] as a finality layer for Bitcoin Cash [100].
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