359 research outputs found

    A Multiscale Diffuse-Interface Model for Two-Phase Flow in Porous Media

    Full text link
    In this paper we consider a multiscale phase-field model for capillarity-driven flows in porous media. The presented model constitutes a reduction of the conventional Navier-Stokes-Cahn-Hilliard phase-field model, valid in situations where interest is restricted to dynamical and equilibrium behavior in an aggregated sense, rather than a precise description of microscale flow phenomena. The model is based on averaging of the equation of motion, thereby yielding a significant reduction in the complexity of the underlying Navier-Stokes-Cahn-Hilliard equations, while retaining its macroscopic dynamical and equilibrium properties. Numerical results are presented for the representative 2-dimensional capillary-rise problem pertaining to two closely spaced vertical plates with both identical and disparate wetting properties. Comparison with analytical solutions for these test cases corroborates the accuracy of the presented multiscale model. In addition, we present results for a capillary-rise problem with a non-trivial geometry corresponding to a porous medium

    Convergence Analysis and Error Estimates for a Second Order Accurate Finite Element Method for the Cahn-Hilliard-Navier-Stokes System

    Get PDF
    In this paper, we present a novel second order in time mixed finite element scheme for the Cahn-Hilliard-Navier-Stokes equations with matched densities. The scheme combines a standard second order Crank-Nicholson method for the Navier-Stokes equations and a modification to the Crank-Nicholson method for the Cahn-Hilliard equation. In particular, a second order Adams-Bashforth extrapolation and a trapezoidal rule are included to help preserve the energy stability natural to the Cahn-Hilliard equation. We show that our scheme is unconditionally energy stable with respect to a modification of the continuous free energy of the PDE system. Specifically, the discrete phase variable is shown to be bounded in ℓ∞(0,T;L∞)\ell^\infty \left(0,T;L^\infty\right) and the discrete chemical potential bounded in ℓ∞(0,T;L2)\ell^\infty \left(0,T;L^2\right), for any time and space step sizes, in two and three dimensions, and for any finite final time TT. We subsequently prove that these variables along with the fluid velocity converge with optimal rates in the appropriate energy norms in both two and three dimensions.Comment: 33 pages. arXiv admin note: text overlap with arXiv:1411.524
    • …
    corecore