5 research outputs found

    Fully decentralized and collaborative multilateration primitives for uniquely localizing WSNs

    Get PDF
    We provide primitives for uniquely localizing WSN nodes. The goal is to maximize the number of uniquely localized nodes assuming a fully decentralized model of computation. Each node constructs a cluster of its own and applies unique localization primitives on it. These primitives are based on constructing a special order for multilaterating the nodes within the cluster. The proposed primitives are fully collaborative and thus the number of iterations required to compute the localization is fewer than that of the conventional iterative multilateration approaches. This further limits the messaging requirements. With relatively small clusters and iteration counts, we can localize almost all the uniquely localizable nodes.This work was partially supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Grant no. 106E071.Publisher's Versio

    Localizability of Wireless Sensor Networks: Beyond Wheel Extension

    Full text link
    A network is called localizable if the positions of all the nodes of the network can be computed uniquely. If a network is localizable and embedded in plane with generic configuration, the positions of the nodes may be computed uniquely in finite time. Therefore, identifying localizable networks is an important function. If the complete information about the network is available at a single place, localizability can be tested in polynomial time. In a distributed environment, networks with trilateration orderings (popular in real applications) and wheel extensions (a specific class of localizable networks) embedded in plane can be identified by existing techniques. We propose a distributed technique which efficiently identifies a larger class of localizable networks. This class covers both trilateration and wheel extensions. In reality, exact distance is almost impossible or costly. The proposed algorithm based only on connectivity information. It requires no distance information

    Fully Decentralized and Collaborative Multilateration Primitives for Uniquely Localizing WSNs

    No full text
    We provide primitives for uniquely localizing WSN nodes. The goal is to maximize the number of uniquely localized nodes assuming a fully decentralized model of computation. Each node constructs a cluster of its own and applies unique localization primitives on it. These primitives are based on constructing a special order for multilaterating the nodes within the cluster. The proposed primitives are fully collaborative and thus the number of iterations required to compute the localization is fewer than that of the conventional iterative multilateration approaches. This further limits the messaging requirements. With relatively small clusters and iteration counts, we can localize almost all the uniquely localizable nodes
    corecore