247 research outputs found

    A Web-Based Automated Image Processing Research Platform for Cochlear Implantation-Related Studies

    Get PDF
    International audienceThe robust delineation of the cochlea and its inner structures combined with the detection of the electrode of a cochlear implant within these structures is essential for envisaging a safer, more individualized, routine image-guided cochlear implant therapy. We present Nautilus—a web-based research platform for automated pre- and post-implantation cochlear analysis. Nautilus delineates cochlear structures from pre-operative clinical CT images by combining deep learning and Bayesian inference approaches. It enables the extraction of electrode locations from a post-operative CT image using convolutional neural networks and geometrical inference. By fusing pre- and post-operative images, Nautilus is able to provide a set of personalized pre- and post-operative metrics that can serve the exploration of clinically relevant questions in cochlear implantation therapy. In addition, Nautilus embeds a self-assessment module providing a confidence rating on the outputs of its pipeline. We present a detailed accuracy and robustness analyses of the tool on a carefully designed dataset. The results of these analyses provide legitimate grounds for envisaging the implementation of image-guided cochlear implant practices into routine clinical workflows

    Self-supervised Registration and Segmentation of the Ossicles with A Single Ground Truth Label

    Full text link
    AI-assisted surgeries have drawn the attention of the medical image research community due to their real-world impact on improving surgery success rates. For image-guided surgeries, such as Cochlear Implants (CIs), accurate object segmentation can provide useful information for surgeons before an operation. Recently published image segmentation methods that leverage machine learning usually rely on a large number of manually predefined ground truth labels. However, it is a laborious and time-consuming task to prepare the dataset. This paper presents a novel technique using a self-supervised 3D-UNet that produces a dense deformation field between an atlas and a target image that can be used for atlas-based segmentation of the ossicles. Our results show that our method outperforms traditional image segmentation methods and generates a more accurate boundary around the ossicles based on Dice similarity coefficient and point-to-point error comparison. The mean Dice coefficient is improved by 8.51% with our proposed method.Comment: conferenc

    IE-Map: a novel in-vivo atlas and template of the human inner ear

    Get PDF
    Brain atlases and templates are core tools in scientific research with increasing importance also in clinical applications. Advances in neuroimaging now allowed us to expand the atlas domain to the vestibular and auditory organ, the inner ear. In this study, we present IE-Map, an in-vivo template and atlas of the human labyrinth derived from multi-modal high-resolution magnetic resonance imaging (MRI) data, in a fully non-invasive manner without any contrast agent or radiation. We reconstructed a common template from 126 inner ears (63 normal subjects) and annotated it with 94 established landmarks and semi-automatic segmentations of all relevant macroscopic vestibular and auditory substructures. We validated the atlas by comparing MRI templates to a novel CT/micro-CT atlas, which we reconstructed from 21 publicly available post-mortem images of the bony labyrinth. Templates in MRI and micro-CT have a high overlap, and several key anatomical measures of the bony labyrinth in IE-Map are in line with micro-CT literature of the inner ear. A quantitative substructural analysis based on the new template, revealed a correlation of labyrinth parameters with total intracranial volume. No effects of gender or laterality were found. We provide the validated templates, atlas segmentations, surface meshes and landmark annotations as open-access material, to provide neuroscience researchers and clinicians in neurology, neurosurgery, and otorhinolaryngology with a widely applicable tool for computational neuro-otology

    Patient-specific estimation of detailed cochlear shape from clinical CT images

    Get PDF
    PURPOSE A personalized estimation of the cochlear shape can be used to create computational anatomical models to aid cochlear implant (CI) surgery and CI audio processor programming ultimately resulting in improved hearing restoration. The purpose of this work is to develop and test a method for estimation of the detailed patient-specific cochlear shape from CT images. METHODS From a collection of temporal bone [Formula: see text]CT images, we build a cochlear statistical deformation model (SDM), which is a description of how a human cochlea deforms to represent the observed anatomical variability. The model is used for regularization of a non-rigid image registration procedure between a patient CT scan and a [Formula: see text]CT image, allowing us to estimate the detailed patient-specific cochlear shape. RESULTS We test the accuracy and precision of the predicted cochlear shape using both [Formula: see text]CT and CT images. The evaluation is based on classic generic metrics, where we achieve competitive accuracy with the state-of-the-art methods for the task. Additionally, we expand the evaluation with a few anatomically specific scores. CONCLUSIONS The paper presents the process of building and using the SDM of the cochlea. Compared to current best practice, we demonstrate competitive performance and some useful properties of our method

    Image-guided surgery and medical robotics in the cranial area

    Get PDF
    Surgery in the cranial area includes complex anatomic situations with high-risk structures and high demands for functional and aesthetic results. Conventional surgery requires that the surgeon transfers complex anatomic and surgical planning information, using spatial sense and experience. The surgical procedure depends entirely on the manual skills of the operator. The development of image-guided surgery provides new revolutionary opportunities by integrating presurgical 3D imaging and intraoperative manipulation. Augmented reality, mechatronic surgical tools, and medical robotics may continue to progress in surgical instrumentation, and ultimately, surgical care. The aim of this article is to review and discuss state-of-the-art surgical navigation and medical robotics, image-to-patient registration, aspects of accuracy, and clinical applications for surgery in the cranial area
    corecore