2,791 research outputs found

    Automatic landmark annotation and dense correspondence registration for 3D human facial images

    Full text link
    Dense surface registration of three-dimensional (3D) human facial images holds great potential for studies of human trait diversity, disease genetics, and forensics. Non-rigid registration is particularly useful for establishing dense anatomical correspondences between faces. Here we describe a novel non-rigid registration method for fully automatic 3D facial image mapping. This method comprises two steps: first, seventeen facial landmarks are automatically annotated, mainly via PCA-based feature recognition following 3D-to-2D data transformation. Second, an efficient thin-plate spline (TPS) protocol is used to establish the dense anatomical correspondence between facial images, under the guidance of the predefined landmarks. We demonstrate that this method is robust and highly accurate, even for different ethnicities. The average face is calculated for individuals of Han Chinese and Uyghur origins. While fully automatic and computationally efficient, this method enables high-throughput analysis of human facial feature variation.Comment: 33 pages, 6 figures, 1 tabl

    Physical and statistical shape modelling in craniomaxillofacial surgery: a personalised approach for outcome prediction

    Get PDF
    Orthognathic surgery involves repositioning of the jaw bones to restore face function and shape for patients who require an operation as a result of a syndrome, due to growth disturbances in childhood or after trauma. As part of the preoperative assessment, three-dimensional medical imaging and computer-assisted surgical planning help to improve outcomes, and save time and cost. Computer-assisted surgical planning involves visualisation and manipulation of the patient anatomy and can be used to aid objective diagnosis, patient communication, outcome evaluation, and surgical simulation. Despite the benefits, the adoption of three-dimensional tools has remained limited beyond specialised hospitals and traditional two-dimensional cephalometric analysis is still the gold standard. This thesis presents a multidisciplinary approach to innovative surgical simulation involving clinical patient data, medical image analysis, engineering principles, and state-of-the-art machine learning and computer vision algorithms. Two novel three-dimensional computational models were developed to overcome the limitations of current computer-assisted surgical planning tools. First, a physical modelling approach – based on a probabilistic finite element model – provided patient-specific simulations and, through training and validation, population-specific parameters. The probabilistic model was equally accurate compared to two commercial programs whilst giving additional information regarding uncertainties relating to the material properties and the mismatch in bone position between planning and surgery. Second, a statistical modelling approach was developed that presents a paradigm shift in its modelling formulation and use. Specifically, a 3D morphable model was constructed from 5,000 non-patient and orthognathic patient faces for fully-automated diagnosis and surgical planning. Contrary to traditional physical models that are limited to a finite number of tests, the statistical model employs machine learning algorithms to provide the surgeon with a goal-driven patient-specific surgical plan. The findings in this thesis provide markers for future translational research and may accelerate the adoption of the next generation surgical planning tools to further supplement the clinical decision-making process and ultimately to improve patients’ quality of life

    3D statistical shape analysis of the face in Apert syndrome

    Get PDF
    Timely diagnosis of craniofacial syndromes as well as adequate timing and choice of surgical technique are essential for proper care management. Statistical shape models and machine learning approaches are playing an increasing role in Medicine and have proven its usefulness. Frameworks that automate processes have become more popular. The use of 2D photographs for automated syndromic identification has shown its potential with the Face2Gene application. Yet, using 3D shape information without texture has not been studied in such depth. Moreover, the use of these models to understand shape change during growth and its applicability for surgical outcome measurements have not been analysed at length. This thesis presents a framework using state-of-the-art machine learning and computer vision algorithms to explore possibilities for automated syndrome identification based on shape information only. The purpose of this was to enhance understanding of the natural development of the Apert syndromic face and its abnormality as compared to a normative group. An additional method was used to objectify changes as result of facial bipartition distraction, a common surgical correction technique, providing information on the successfulness and on inadequacies in terms of facial normalisation. Growth curves were constructed to further quantify facial abnormalities in Apert syndrome over time along with 3D shape models for intuitive visualisation of the shape variations. Post-operative models were built and compared with age-matched normative data to understand where normalisation is coming short. The findings in this thesis provide markers for future translational research and may accelerate the adoption of the next generation diagnostics and surgical planning tools to further supplement the clinical decision-making process and ultimately to improve patients’ quality of life
    • …
    corecore