10,611 research outputs found

    Semantics of Input-Consuming Logic Programs

    Get PDF
    Input-consuming programs are logic programs with an additional restriction on the selectability (actually, on the resolvability) of atoms. this class of programs arguably allows to model logic programs employing a dynamic selection rule and constructs such as delay declarations: as shown also in [5], a large number of them are actually input-consuming. \ud in this paper we show that - under some syntactic restrictions - the tex2html_wrap_inline117-semantics of a program is correct and fully abstract also for input-consuming programs. this allows us to conclude that for a large class of programs employing delay declarations there exists a model-theoretic semantics which is equivalent to the operational one

    An Abstract Interpretation Framework for Diagnosis and Verification of Timed Concurrent Constraint Languages

    Get PDF
    In this thesis, we propose a semantic framework for tccp based on abstract interpretation with the main purpose of formally verifying and debugging tccp programs. A key point for the efficacy of the resulting methodologies is the adequacy of the concrete semantics. Thus, in this thesis, much effort has been devoted to the development of a suitable small-step denotational semantics for the tccp language to start with. Our denotational semantics models precisely the small-step behavior of tccp and is suitable to be used within the abstract interpretation framework. Namely, it is defined in a compositional and bottom-up way, it is as condensed as possible (it does not contain redundant elements), and it is goal-independent (its calculus does not depend on the semantic evaluation of a specific initial agent). Another contribution of this thesis is the definition (by abstraction of our small-step denotational semantics) of a big-step denotational semantics that abstracts away from the information about the evolution of the state and keeps only the the first and the last (if it exists) state. We show that this big-step semantics is essentially equivalent to the input-output semantics. In order to fulfill our goal of formally validate tccp programs, we build different approximations of our small-step denotational semantics by using standard abstract interpretation techniques. In this way we obtain debugging and verification tools which are correct by construction. More specifically, we propose two abstract semantics that are used to formally debug tccp programs. The first one approximates the information content of tccp behavioral traces, while the second one approximates our small-step semantics with temporal logic formulas. By applying abstract diagnosis with these abstract semantics we obtain two fully-automatic verification methods for tccp

    Synthesis of Strategies Using the Hoare Logic of Angelic and Demonic Nondeterminism

    Full text link
    We study a propositional variant of Hoare logic that can be used for reasoning about programs that exhibit both angelic and demonic nondeterminism. We work in an uninterpreted setting, where the meaning of the atomic actions is specified axiomatically using hypotheses of a certain form. Our logical formalism is entirely compositional and it subsumes the non-compositional formalism of safety games on finite graphs. We present sound and complete Hoare-style calculi that are useful for establishing partial-correctness assertions, as well as for synthesizing implementations. The computational complexity of the Hoare theory of dual nondeterminism is investigated using operational models, and it is shown that the theory is complete for exponential time

    An interactive semantics of logic programming

    Full text link
    We apply to logic programming some recently emerging ideas from the field of reduction-based communicating systems, with the aim of giving evidence of the hidden interactions and the coordination mechanisms that rule the operational machinery of such a programming paradigm. The semantic framework we have chosen for presenting our results is tile logic, which has the advantage of allowing a uniform treatment of goals and observations and of applying abstract categorical tools for proving the results. As main contributions, we mention the finitary presentation of abstract unification, and a concurrent and coordinated abstract semantics consistent with the most common semantics of logic programming. Moreover, the compositionality of the tile semantics is guaranteed by standard results, as it reduces to check that the tile systems associated to logic programs enjoy the tile decomposition property. An extension of the approach for handling constraint systems is also discussed.Comment: 42 pages, 24 figure, 3 tables, to appear in the CUP journal of Theory and Practice of Logic Programmin

    A compositional Semantics for CHR

    Full text link
    Constraint Handling Rules (CHR) are a committed-choice declarative language which has been designed for writing constraint solvers. A CHR program consists of multi-headed guarded rules which allow one to rewrite constraints into simpler ones until a solved form is reached. CHR has received a considerable attention, both from the practical and from the theoretical side. Nevertheless, due the use of multi-headed clauses, there are several aspects of the CHR semantics which have not been clarified yet. In particular, no compositional semantics for CHR has been defined so far. In this paper we introduce a fix-point semantics which characterizes the input/output behavior of a CHR program and which is and-compositional, that is, which allows to retrieve the semantics of a conjunctive query from the semantics of its components. Such a semantics can be used as a basis to define incremental and modular analysis and verification tools

    On the Relation of Interaction Semantics to Continuations and Defunctionalization

    Get PDF
    In game semantics and related approaches to programming language semantics, programs are modelled by interaction dialogues. Such models have recently been used in the design of new compilation methods, e.g. for hardware synthesis or for programming with sublinear space. This paper relates such semantically motivated non-standard compilation methods to more standard techniques in the compilation of functional programming languages, namely continuation passing and defunctionalization. We first show for the linear {\lambda}-calculus that interpretation in a model of computation by interaction can be described as a call-by-name CPS-translation followed by a defunctionalization procedure that takes into account control-flow information. We then establish a relation between these two compilation methods for the simply-typed {\lambda}-calculus and end by considering recursion

    (Co-)Inductive semantics for Constraint Handling Rules

    Full text link
    In this paper, we address the problem of defining a fixpoint semantics for Constraint Handling Rules (CHR) that captures the behavior of both simplification and propagation rules in a sound and complete way with respect to their declarative semantics. Firstly, we show that the logical reading of states with respect to a set of simplification rules can be characterized by a least fixpoint over the transition system generated by the abstract operational semantics of CHR. Similarly, we demonstrate that the logical reading of states with respect to a set of propagation rules can be characterized by a greatest fixpoint. Then, in order to take advantage of both types of rules without losing fixpoint characterization, we present an operational semantics with persistent. We finally establish that this semantics can be characterized by two nested fixpoints, and we show the resulting language is an elegant framework to program using coinductive reasoning.Comment: 17 page

    A Denotational Semantics for Communicating Unstructured Code

    Full text link
    An important property of programming language semantics is that they should be compositional. However, unstructured low-level code contains goto-like commands making it hard to define a semantics that is compositional. In this paper, we follow the ideas of Saabas and Uustalu to structure low-level code. This gives us the possibility to define a compositional denotational semantics based on least fixed points to allow for the use of inductive verification methods. We capture the semantics of communication using finite traces similar to the denotations of CSP. In addition, we examine properties of this semantics and give an example that demonstrates reasoning about communication and jumps. With this semantics, we lay the foundations for a proof calculus that captures both, the semantics of unstructured low-level code and communication.Comment: In Proceedings FESCA 2015, arXiv:1503.0437
    • …
    corecore