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Abstract

Nowadays, concurrent and reactive systems are widely used in a great variety of modern
applications. We can think, for example, in mobile phone applications or in the software
used in the medical or in the financial sphere. It is often the case that these applications
are classified as critical, therefore a single error in the system can lead to catastrophic
consequences. It is well known that finding program bugs is a very hard task, which
become even worse when it is necessary to deal with time and concurrency features. For
these reasons, formal verification of concurrent and reactive systems is a hot topic in
modern computer science.

The concurrent constraint paradigm (ccp in short) is a simple but powerful model
for concurrent systems. It is different from other programming paradigms mainly due to
the notion of store-as-constraint that replaces the classical store-as-valuation model. In
this way, the languages from this paradigm can easily deal with partial information (an
underlying constraint system handles constraints on system variables).

Within the ccp family, the Timed Concurrent Constraint Language (tccp in short)
adds to the original ccp model the notion of time and the ability to capture the absence
of information. With these features, it is possible to specify—in a very natural way—
behaviors typical of reactive systems such as timeouts or preemption actions.

The existing formal techniques for the verification of tccp are based on model checking.
Model checking is a verification method that, given a graph representation of the program
and a temporal logic formula, is able to check if the program satisfies the formula. However,
this method suffers the state-explosion problem, i.e., the dimension of the graph grows
exponentially w.r.t. the dimension of the program. This problem limits the use of model
checking, especially in presence of concurrency.

In the field of formal verification, abstract interpretation is a valid alternative to model
checking. Abstract interpretation is a theory of sound semantic approximation proposed
with the aim of providing a general framework for analysis, verification and debugging of
systems. The main idea behind this approach is to approximate the program behavior
(or concrete semantics) into an abstract semantics in order to obtain effectiveness and
efficiency at the price of losing some precision in the results.

In this thesis, we propose a semantic framework for tccp based on abstract interpreta-
tion with the main purpose of formally verifying and debugging tccp programs.

A key point for the efficacy of the resulting methodologies is the adequacy of the
concrete semantics. Thus, in this thesis, much effort has been devoted to the development
of a suitable small-step denotational semantics for the tccp language to start with.

Our denotational semantics models precisely the small-step behavior of tccp and is
suitable to be used within the abstract interpretation framework. Namely, it is defined
in a compositional and bottom-up way, it is as condensed as possible (it does not contain



redundant elements), and it is goal-independent (its calculus does not depend on the
semantic evaluation of a specific initial agent).

Another contribution of this thesis is the definition (by abstraction of our small-step
denotational semantics) of a big-step denotational semantics that abstracts away from
the information about the evolution of the state and keeps only the the first and the last
(if it exists) state. We show that this big-step semantics is essentially equivalent to the
input-output semantics defined by de Boer, Gabbrielli and Meo in [43].

In order to fulfill our goal of formally validate tccp programs, we build different approxi-
mations of our small-step denotational semantics by using standard abstract interpretation
techniques. In this way we obtain debugging and verification tools which are correct by
construction. More specifically, we propose two abstract semantics that are used to for-
mally debug tccp programs. The first one approximates the information content of tccp
behavioral traces, while the second one approximates our small-step semantics with tem-
poral logic formulas. By applying abstract diagnosis with these abstract semantics we
obtain two fully-automatic verification methods for tccp.
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Thanks also to Andrea “Tello” Tellini for being such a good friend, for watching
together (or at least commenting in real-time via WhatsApp) figure skating competitions,
for the fun we had at the Spanish lessons with Marilú, for his hospitality in Madrid, and for
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Guti, Rúben, Rata and Alejandra, Xisco, Clara, Mireia and Luis, and more.

I am grateful to each and every one of you with all my heart, everyone of you helped
me in some way or another, consciously or not, to make this chapter of my life unique,
thank you!

May 2014,

Laura Titolo





Contents

Introduction vii

I.1 Modeling concurrent and reactive systems within the cc paradigm . . . . . viii

I.2 Formal Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

I.2.1 Formal verification of timed concurrent constraint languages . . . . xi

I.3 Automatic approaches based on Abstract Interpretation . . . . . . . . . . . xii

I.3.1 Behavioral equivalences, correctness and full-abstraction . . . . . . . xiii

I.3.2 Semantic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

I.3.3 Abstract diagnosis and debugging . . . . . . . . . . . . . . . . . . . . xv

I.4 Thesis Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

I.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

I.6 Publications related to this thesis . . . . . . . . . . . . . . . . . . . . . . . . . xviii

1 Preliminaries 1

1.1 Basic Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Relations and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Domain Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Complete lattices and continuous functions . . . . . . . . . . . . . . . 4

1.2.2 Fixpoint Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Abstract Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Closures on complete lattices . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Galois Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Abstract semantics, correctness and precision . . . . . . . . . . . . . 10

1.3.4 Correctness and precision of compositional semantics . . . . . . . . . 11

1.4 Constraint Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Linear Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Timed Concurrent Constraint Programming 17

2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Small-step and Big-step Semantics 25

3.1 Small-step Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 The semantic domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 Fixpoint denotations of programs . . . . . . . . . . . . . . . . . . . . 31

3.2 Big-step Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Input-output semantics with infinite outcomes . . . . . . . . . . . . . 48

3.2.2 Modeling the input-output semantics of [43] . . . . . . . . . . . . . . 49

3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Discussion on the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



ii Contents

3.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.A.1 Proofs of Section 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.A.2 Proofs of Section 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Abstract Diagnosis for tccp based on constraint system abstractions 79

4.1 Abstract Diagnosis for tccp based on Galois Insertions . . . . . . . . . . . . 80

4.2 Abstraction scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 Constraint System Abstraction . . . . . . . . . . . . . . . . . . . . . . 83

4.2.2 Abstraction of information in conditional traces . . . . . . . . . . . . 88

4.2.3 Abstraction of the conditional traces structure . . . . . . . . . . . . . 90

4.3 Induced Abstract Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Abstract Diagnosis for tccp based on constraint system abstractions . . . . 97

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 Discussion on the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.A.1 Proofs of Section 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.A.2 Proofs of Section 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.A.3 Proofs of Section 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Abstract Diagnosis for tccp based on temporal formulas 117

5.1 Abstract Diagnosis for tccp based on concretization functions . . . . . . . . 118

5.2 Abstraction scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 csLTL Abstract Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 Abstract Diagnosis for tccp based on csLTL formulas . . . . . . . . . . . . . 125

5.5 An automatic decision procedure for csLTL . . . . . . . . . . . . . . . . . . . 127

5.5.1 Basic rules for a csLTL tableau . . . . . . . . . . . . . . . . . . . . . . 128

5.5.2 Semantic csLTL tableau . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5.3 A systematic csLTL tableaux construction . . . . . . . . . . . . . . . 132

5.5.4 Soundness and completeness . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5.5 Application of the tableau . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.7 Discussion on the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.A.1 Proofs of Section 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.A.2 Proofs of Section 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.A.3 Proofs of Section 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6 Implementation 151

6.1 Parser Suite description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2 Abstract Semantics Suite description . . . . . . . . . . . . . . . . . . . . . . . 155

6.2.1 Abstract Semantics Engine . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2.2 Abstract Diagnosis Engine . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2.3 Abstract Domain Module . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2.4 Constraint Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.3 TADi: a Temporal Abstract Diagnosis Tool . . . . . . . . . . . . . . . . . . . 157

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158



Contents iii

Conclusions 161

Bibliography 163



iv Contents



List of Figures

1 Example of actions on a constraint store in ccp . . . . . . . . . . . . . . . . . viii
2 The languages of the cc paradigm . . . . . . . . . . . . . . . . . . . . . . . . . x

1.1 The Herbrand cylindric constraint system for x, y, a and b . . . . . . . . . . 14
1.2 The Herbrand cylindric constraint system for x, a and f . . . . . . . . . . . 14

2.1 tccp syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 The transition system for tccp. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 tccp microwave error controller . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 tccp railroad crossing system controller . . . . . . . . . . . . . . . . . . . . . . 23
2.5 tccp railroad crossing system train . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 tccp railroad crossing system gate . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 tccp railroad crossing system initialization . . . . . . . . . . . . . . . . . . . . 24

3.1 Tree representation of AJA4KI in Example 3.1.17. . . . . . . . . . . . . . . . 37
3.2 Graph representation of AJA4KI in Example 3.1.17. . . . . . . . . . . . . . . 37
3.3 Tree representation for AJAKI in Example 3.1.21. . . . . . . . . . . . . . . . 40
3.4 Graph representation of the fixpoint F JDK(q(x, y)) in Example 3.1.21. . . 41
3.5 Graph representation for AJAKI in Example 3.1.22. . . . . . . . . . . . . . . 41
3.6 Graph representation of the fixpoint F JDK(p(x)) in Example 3.1.22. . . . . 42
3.7 Graph representation for AJAKI in Example 3.1.23. . . . . . . . . . . . . . . 42
3.8 Graph representation of DJDK↑1(p(x, y)) in Example 3.1.23. . . . . . . . . 43
3.9 Graph representation of DJDK↑2(p(x, y)) in Example 3.1.23. . . . . . . . . 43
3.10 Graph representation of F JDK(p(x, y)) in Example 3.1.23. . . . . . . . . . . 44
3.11 Tree representation of F JDK(microwave(D,B,E)) in Example 3.1.24. . . . 45

5.1 α- and β-formulas rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2 Tableau of Example 5.5.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.3 Tableau of Example 5.5.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1 Prototype Architecture Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.2 BNF grammar for the constraint system . . . . . . . . . . . . . . . . . . . . . 153
6.3 BNF grammar for tccp programs . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.4 BNF grammar for csLTL formulas . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.5 TADi web interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



vi List of Figures



Introduction

“Contradiction is not a sign of falsity, nor the lack of contradiction a sign of
truth.”

Blaise Pascal

In the last years, concurrent, reactive and distributed systems have had a wide spread.
Time aspects have become essential to an increasingly large number of applications and the
large diffusion of internet have made fundamental the use of concurrency and distributed
features in modern software.

A concurrent system contains different components that run in parallel and interact
with each other. When these components are located in different parts of the world, the
system is called distributed. Reactive systems are those systems that interact continuously
with their environment and that require the specification of some timing constraints, for
example, that a certain signal is expected in a bounded period of time. Among this family
we can distinguish real-time systems (e.g. process controllers, signal processing systems)
that are subject to hard timing constraints. A reactive system can be seen as a concurrent
one where the main system and the environment are two agents that run in parallel and
exchange information.

Often, these systems are classified as critical, i.e., a single error in the software can
lead to great loss in human lives or money. We can think, for example, on electronic
financial transitions, electronic commerce, medical instruments, or air traffic control. In
[22, 79], some significant examples of error cases are listed. When the software is critical,
it is necessary to use formal methods to debug and verify it, in order to be sure that the
system behaves correctly. Also in case the software is not critical is recommended to use
formal methods in order to detect bugs. In fact, concurrency bugs are among the most
difficult to find since they result from the concurrent contribution of several agents that
run in parallel. Furthermore, interleaving and scheduling features additionally complicate
the debugging phase since they generate computations which are hard to reproduce.

Formal methods are a collection of notations and techniques for describing, verifying
and analyzing systems. Applying formal techniques usually requires modeling the system
first. A model of a system is a mathematical representation of the properties that are of
interest, by keeping the essential details and by omitting unimportant aspects.

Many formalisms have been developed to model concurrent systems. Some examples
of synchronous models are the process calculi of Milner’s CCS [82], Hoare’s CSP [70] or
the ACP of Bergstra and Klop [9]. One of those formalisms is the Concurrent Constraint
(cc) paradigm [104]. It differs from other paradigms mainly due to the notion of store-
as-constraint that replaces the classical store-as-valuation model. Thanks to this notion,
it is possible to manage easily partial information since an underlying constraint system
handles constraints on system variables.
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Figure 1: Example of actions on a constraint store in ccp

I.1 Modeling concurrent and reactive systems within the cc
paradigm

Concurrent systems can be seen as a set multiple computing agents (also called processes)
that interact among each other. Some examples of these systems are communication
systems based on message-passing, communication systems based on shared-variables, or
synchronous systems.

There are many models for concurrent systems. The model considered in this thesis
is the Concurrent Constraint paradigm (cc paradigm or ccp) defined by Saraswat and
Rinard in [103, 104, 109] as a simple and powerful model of concurrent computation. The
cc paradigm is parametric w.r.t. a constraint system. A constraint system can be seen as a
partial information system (see [110]): instead of knowing the specific value of a variable,
just partial information is available. Thus, in this computational model, the notion of
store-as-valuation from von Neumann is replaced with the notion of store-as-constraint.
In this formalism, the agents exchange information through a global constraint store that
is common to all agents. Agents can add new information in the global store, and query
about its content.

A few years after the introduction of ccp, Saraswat, Jagadeesan and Gupta defined an
extension over time of the cc paradigm. This new language, called Temporal Concurrent
Constraint (tcc) language ([105, 106]) was inspired by synchronous languages such as
Esterel [11], Lustre [18] or Signal [61]. tcc is able to specify reactive systems, especially
real-time and embedded ones (a small device designed for specific control functions within
a larger system). The key idea was to introduce a notion of discrete time and some
constructs which allow to model notions such as time-outs or preemptions. A time-out
waits for a limited period of time for an event to occur, if this event does not happen,
then an exception is executed. A preemption consists in the ability of detecting an event
and, as a consequence, aborting the current process and executing a new one. As pointed
out in [106], the essence of the time-out and preemptions mechanisms is in the ability to
detect the absence of an event, as well as its presence.

Another extension over time was presented in [108]: the Timed Default Concurrent
Constraint programming. This language allows one to model strong preemptions: the
abort of the current process and the execution of the new one must happen at the same
time of the detection of the event. As pointed out in [10] and [108], there are some critical
applications in which this kind of preemption is required.

In 1998 Gupta, Jagadeesan and Saraswat presented a language which incorporates a
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notion of continuous (or dense) time into the cc model: the Hybrid cc (hcc) language
[65]. The hcc language is able to model hybrid systems which are systems that have a
continuous behavior controlled by a discrete component. For example, a thermostat can
be seen as a hybrid system: a continuous variable models the temperature, and the turn-
on or turn-off of the system depends on the temperature value limits. [66] shows some
applicative examples for the Timed Default Concurrent Constraint programming language
and for the hcc language.

In 1999, de Boer, Gabbrielli and Meo presented a different approach to extend the
cc paradigm with a notion of discrete time inspired by the process algebra model. The
Timed Concurrent Constraint programming (in short tccp) [43] adds to ccp the notion of
time and some constructs that check for the absence of information in the constraint store,
allowing one to implement behaviors typical of reactive systems, as in tcc.

Although tcc and tccp are both extensions of ccp, the first one is inspired by the
synchronous languages approach, while the second one is inspired by process algebras.
Therefore, these two languages have some important differences.

First of all, the two languages differ on the notion of time. In tcc the computation
proceeds in bursts of activity and in each phase a deterministic ccp process is executed to
respond to an input produced by the environment. This process accumulates monoton-
ically information in the constraint store until it reaches a resting point, i.e., a terminal
state in which no more information can be generated. When this resting point is reached,
the current process can trigger the actions in the next time phase. It follows that each
time interval is identified with the time needed for a ccp process to terminate its com-
putation. On the contrary, in tccp a global discrete clock is introduced. A single time
unit corresponds to the time that a process takes to perform a constraint store elementary
action (adding information or querying the global constraint store).

Another difference regards the recursion and the Turing completeness of these lan-
guages. On one hand, tcc allows only procedures without parameters. As explained in
[87], this kind of recursion is equivalent to replication in terms of expressive power, thus,
tcc is not a Turing powerful language. On the other hand, tccp is Turing powerful since
it allows recursion with parameters.

The interpretation of the parallel operator is different in the two languages: tcc inter-
prets the parallelism in terms of interleaving, while tccp makes the assumption of infinite
processors and uses the notion of maximal parallelism.

Finally, tcc is a deterministic language, while tccp allows non-determinism. The notion
of non-determinism was introduced into the tcc model a few years later by Palamidessi
and Valencia in [93] by defining the ntcc language.

In 2007, Olarte, Palamidessi and Valencia introduced the Universal Timed Concurrent
Constraint language (utcc) [89, 90] with the aim of modeling mobile reactive systems. utcc
extends tcc with the notion of mobility in the sense of Milners π-calculus [83, 84]. In this
way this language allows the generation and communication of private channels or links.

The extensions of the cc paradigm proposed in the literature are graphically illustrated
in Figure 2.
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Figure 2: The languages of the cc paradigm

I.2 Formal Verification

The verification of a system consists in checking its correctness with respect to a given
intended behavior. In this section, we present some of the principal techniques that have
been proposed in the literature. We distinguish between non-formal techniques (such as
testing), which cannot assure the absence of errors, and formal techniques, that are based
on some mathematical theory and can assure that a program behaves as expected.

Testing [75, 86, 95] is a simple technique to check the correctness of a program. It
consists in executing the program that we want to verify, and then analyzing the executions
to detect errors. Each execution is compared with the expected one and, in case they do
not coincide, it means that an error has occurred. This technique is widely used to improve
the quality of software, since it can be used by non expert people in mathematics or logic.
Testing is not considered a formal verification method since it is based on the analysis of
only some executions of the considered program. Therefore, it is not possible to ensure
the total absence of errors.

Formal verification is a set of mathematical notations and techniques whose aim is
that of proving that a program satisfies a given specification (and thus does not contain
specific errors).

Theorem proving was the first formal verification method studied in the literature (see
[56, 69]). This is a deductive method which is guided by the user and, originally, had to
be performed manually. Therefore, the success of deductive proofs depends a lot on the
capability of the user, since the verification process can be difficult and error prone. For
this reason, classic theorem proving must be applied by expert people. In order to solve
these problems, some tools have been developed to make this process semi-automatic.
Some of the most used automated theorem provers (or proof assistant) are Isabelle [96],
Coq [30] and PSV [92]. These tools, by using some heuristics, are able to suggest the
user how to continue a proof at a specific point. Automated theorem proving has a lot
of good features: it is reliable since it uses mathematics and logic theory, it admits the
introduction of invariants in the code to allow run-time verification, and it can help one
to define formal semantics of programming languages. However, this approach has also
many drawbacks, for example it is not completely automatic and a lot of time and effort
are needed to complete a proof.

One of the most popular verification methods is model checking, introduced by Clarke
and Emerson [20, 21, 48] and by Queille and Sifakis [100] independently. Model checking
is an automatic technique that, given a graph representation of the program and a tempo-
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ral logic formula, checks if the program satisfies the formula by performing an exhaustive
analysis of the system state-space. However, this method suffers the state-explosion prob-
lem, i.e., the dimension of the graph grows exponentially w.r.t. the dimension of the
program. Thus, classic model checking is ineffective in most cases. Some strategies have
been presented in the literature to mitigate this problem. Abstract model checking uses
an approximation of the model that removes some irrelevant details in order to reduce its
size, while symbolic model checking [17, 81] uses an implicit representation of the model
based on Ordered Binary Decision Diagrams (OBDDs), defined in [16]. The key idea is
that the temporal formula can be checked directly over the implicit representation of the
system in a more efficient way. Another drawback of model checking is that, in general,
the system must be manually modeled in the language handled by the model checker, and
this is sometimes a difficult and error prone task. In the framework of formal methods,
an alternative approach to model checking can be found in abstract interpretation theory.

Abstract interpretation [31, 33] is a general theory for approximating the behavior
of a program. The relevant feature of abstract interpretation is that, once the property
intended to be observed has been modeled by an abstract domain, we have a methodology
to systematically derive an abstract semantics, which allows us to effectively compute a
(correct) approximation of the behavior of the program. This is obtained in general at the
expense of precision.

Another verification technique is declarative debugging that was firstly proposed for
logic programs [54, 76, 113] and then extended to other languages. It is a semi-automatic
debugging technique where the debugger tries to locate the node in a computation tree
which is ultimately responsible for a visible bug symptom. This is done by asking questions
on correctness of solutions to the user, which assumes the role of the oracle.

Abstract diagnosis [25] is an instance of declarative debugging based on abstract in-
terpretation. Given a program and a finite approximation of the intended behavior, this
method automatically checks if the program behaves correctly. Abstract diagnosis uses
an abstract semantics, defined as the fixpoint of an (abstract) immediate consequence op-
erator, and a given approximated intended behavior, called abstract specification. Errors
are detected by comparing the abstract specification with the result of the calculus of
just one step of the abstract immediate consequence operator by assuming the abstract
specification to be correct.

I.2.1 Formal verification of timed concurrent constraint languages

In this section we provide an overview of the state of the art related to formal verification
of the time extensions of the cc paradigm.

The existing formal techniques for the verification of tccp are based on model checking
[53]. As already pointed out, the main drawback of this technique is the combinatorial
blow up of the state-space. This problem, called state-explosion problem, becomes even
worse for concurrent systems. To mitigate this problem two different approaches were
proposed: abstract model checking in [5, 4] that reduces the size of the initial model
by means of an approximation, and symbolic model checking in [2] that uses a symbolic
representation of the model. Although these methods enhance the applicability of tccp
model checking, the combinatory explosion of the state-space is still a problem.

In [51], a first approach to the declarative debugging of a timed ccp language is pre-
sented. Falaschi et al. introduce a semantic framework for ntcc and, by using standard
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abstract interpretation techniques, they define an automatic debugging method. In 2009
a similar approach was presented in [50] for utcc.

In [44, 45], a temporal logic is introduced for reasoning about tccp programs, joint to
a sound and complete proof system. This logic is an extension of the Linear Temporal
Logic (LTL) presented by Manna and Pnueli in [78]. The authors replace classical logic
propositions with constraints and add the notion of monadic modalities over constraints.
Monadic modalities take the form X (c), where c is a constraint of the underlying constraint
system, and X expresses a specific property of the program. This extension is needed
by the authors of [45] to distinguish the stimuli coming from the environment and the
information produced by the program itself in response to the environment.

An analogous work was made for ntcc. In [93, 88] ntcc is equipped with a temporal
logic, called CLTL (Constraint LTL), able to express program properties. The authors also
provide a satisfiability relation for the formulas w.r.t. the behavioral sequences and a
proof system to check the properties of ntcc processes. CLTL slightly differs from the logic
presented in [45] since it does not use monadic modalities. In this context, these modal-
ities are unnecessary because the authors are interested in reasoning about the strongest
postcondition, thus they abstract away from the inputs of the external environment.

In [116], Valencia presents some decidability results for the verification of ntcc programs
using CLTL specifications. He shows that for the locally-independent fragment of ntcc, it
is possible to automatically verify a negation-free CLTL formula. Namely, if the semantics
of a given program P is equivalent to the one of a program Pφ, which is built from the
formula φ by means of a correct procedure, then P satisfies φ. The semantic equivalence
for the locally-independent fragment of ntcc is decidable since there is only a finite number
of possible configurations of the constraint store for a locally-independent ntcc program.
This is a consequence of the monotonicity of the locally-independent fragment of the
language and the absence of recursion (only the replication operator is admitted).

I.3 Automatic approaches based on Abstract Interpretation

Abstract interpretation [31, 33] is a general theory for approximating the semantics of
discrete dynamic systems, which was originally developed by Patrick and Radhia Cousot
in the late 70’s as a unifying framework for specifying and validating static program anal-
yses. In this theory, the behavior (or concrete semantics) of the system is approximated
by means of an abstract semantics which models only the interesting properties on the
program execution. An abstract semantics is built by replacing operations in a suitable
concrete semantics with the corresponding abstract operations defined on data descrip-
tions, namely, abstract domains. Such domains are called abstract because they abstract,
from the concrete computation domain, the properties of interest.

The relevant feature of abstract interpretation is that, once the property intended to
be observed has been modeled by a suitable abstract domain, we have a methodology to
systematically derive the correspondent abstract semantics, which in turn allows us to
effectively compute a (correct) approximation of the property. By using this approach,
most of the theorem-proving techniques, in the logical theory involved in program verifi-
cation, boils down to computing on the abstract domain. This is obtained, in general, at
the expense of precision.

The concrete and the abstract semantics are related by a pair of functions: the ab-
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straction α and the concretization γ. The abstraction function approximates a concrete
element into an abstract one, while the concretization function, given an abstract element
a, returns the concrete elements which are approximated by a. This pair of functions is
called Galois insertion.

The principal technical results of abstract interpretation theory are summarized in
Section 1.3.

Abstract interpretation is inherently semantic sensitive, thus, different semantic defini-
tion styles lead to different approaches to program analysis and verification. The definition
of an appropriate concrete semantics, capable of modeling the program properties of in-
terest, is a key point in abstract interpretation [31]. This ability of a semantics to mimic
exactly the program properties of interest is called full-abstraction. In the following section
we will describe in more detail this concept and its related notions.

I.3.1 Behavioral equivalences, correctness and full-abstraction

The semantics of a program helps to understand its meaning and to reason about its be-
havior. A program admits different semantics depending on the computational properties
we want to observe. This set of properties is called observable behavior and induces an
observational equivalence on programs. Namely, two programs are equivalent w.r.t. a
given property σ (P1 ≈σ P2) if their behaviors cannot be distinguished on that property.
For example, we can decide to observe how the state evolves at each step (small-step be-
havior), or what is the state of the computation at some specific points (big-step behavior)
or even just the input-output behavior.

Semantics are useful to perform program analysis, verification and debugging. But,
in order to apply semantic-based techniques, it is opportune to construct a formal deno-
tational model that is able to capture the behavioral (or operational) properties of the
program.

Given an equivalence on programs ≈σ, it is possible to define a formal denotational
semantics SσJP K that models the operational behavior of the program w.r.t. the property
σ. A semantics is said to be fully abstract w.r.t. a property σ when P1 ≈σ P2 if and only
if SσJP1K = SσJP2K. This means that it identifies all and only the programs which cannot
be distinguished by σ. A non-fully abstract semantics includes non relevant aspects and
introduces distinctions between programs that have the same behavior.

Notice that the notion of full-abstraction is different from the stronger notion of equality
that is sometimes used in the literature. A semantics S is said to be equal to another
semantics S ′ if SJP K = S ′JP K for any program P . Differently from the full-abstraction
notion, the semantic equality requires the two compared semantics to be defined over the
same denotation (or domain). It is easy to see that if two semantics are equal, then they
are also fully-abstract, but not vice versa.

I.3.2 Semantic properties

Besides the full-abstraction, there are some other properties of the (concrete) semantics
that are particularly relevant to obtain a denotational semantics suitable to be used for
semantics-based analysis or verification and for having an effective and efficient implemen-
tation which computes an as-precise-as-possible abstract semantics.

Let us point out these properties and discuss about their benefits.
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Goal-independent. A semantics has a goal-independent definition when the denotation
of any compound (nested) expression is defined in terms of the denotations of most
general calls. For instance, the semantics of an expression like e ∶= f(g(v1, v2), v3)

is obtained by suitable semantics operators which, considering values v1, v2, v3 and
the semantics of f(x, y) and g(w, z), can reconstruct the proper semantics of e. Op-
erational (top-down) semantics are rarely defined in this way since it is more natural
(and easy) to give a (compositional) goal-dependent definition which produces the
effects of the current expression that has to be evaluated. When one is interested in
the results of the evaluation of a specific expression e, it would make little sense to
define a more complicated goal-independent semantics formalization that first eval-
uates all most general expressions and then tailors such evaluations on e to mimic
the effects of a top-down goal-dependent resolution mechanism. In the tailoring
process, many parts of the computed denotations will not be used and thus much
computation effort would be wasted.

However, when we are no longer focused on determining the actual evolution of a
specific expression but we are interested in determining the properties of a program
for all possible executions, things change radically. In this case, we necessarily have
to determine the semantic information regarding all possible expressions, and then
it is more economical to have a goal-independent definition and compute just the
semantics of most general calls (and, when is needed, reconstruct from these the
semantics of specific instancies).

Condensed. A semantics is condensed when denotations contain only the minimal nec-
essary number of semantic elements that are needed to characterize the classes of
semantically equivalent syntactic objects (or, in other words, the minimal informa-
tion needed to distinguish a syntactic object x from the other syntactic objects that
are not semantically equivalent to x).

This may not seem a useful property for a concrete semantics, which—in general—
would nevertheless contain infinite elements even when is condensed. However, this
reduction could anyway frequently change some infinite denotations into finite ones
and—most important—all the abstractions of a condensed concrete semantics will
inherit this property by construction. Hence, by having minimal (abstract) denota-
tions, one obtains by definition algorithms that compute just the minimal number
of (abstract) semantic elements. This is definitely a stunning advantage over non
condensed approaches which rarely can regain this efficiency in some other way.
One could argue that it would be possible to live with a simpler non-condensed
concrete semantics and then, for each abstraction of interest, work on the specific
case to find out its condensed representation. We find more economical (especially
in the long run) to do the effort once for the concrete semantics and then obtain, by
construction, that all abstractions are condensed (with no additional effort).

Bottom-up. A bottom-up definition (in addition to the previous properties), has also an
immediate direct benefit for abstract computations. With a bottom-up definition,
at each iteration we have to collect the contributions of all rules. For each rule we
will use the join operation of the abstract domain in parallel onto all components
of the body of the rule. With a top-down definition instead, we have to expand
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one component of the goal expression at a time, necessarily using several subsequent
applications of the join operation (of the abstract domain) over all components,
rather than a unique simultaneous join of all the semantics of components. The
reduced use of the join of a bottom-up formulation has a twofold benefit. On one
side, it speeds up convergence of the abstract fixpoint computation. On the other
side, it considerably improves precision.

Compositional. Compositionality is one of the most desirable characteristics of a se-
mantics, since it provides a foundation for incremental and modular verification.
Compositionality depends on a (syntactic) program construction operator ○, and
holds when the semantics of the constructs C1 ○C2 can be computed by composing
the semantics of the components C1 and C2.

I.3.3 Abstract diagnosis and debugging

The time and effort spent on validation of computer programs is known to take over half
of the total time for software production. Thus, debugging is an essential ingredient in
software development.

The role of debugging, in general, is to identify and eliminate differences between
the intended semantics of a program and its actual semantics. We will assume that
the user has a clear idea about the results that should be computed by the program.
An error occurs when the program computes something that the programmer did not
intend (incorrectness symptom), or when it fails to compute something he was expecting
(incompleteness or insufficiency symptom). In other words, incorrectness symptoms are
answers which are in the actual program semantics but are not in the intended semantics,
while incompleteness symptoms are answers which are in the intended semantics but are
not in the actual program semantics.

Declarative debugging is a debugging technique which is concerned with model-theo-
retic properties. The idea behind declarative debugging is to collect information about
what the program is intended to do and compare this with what it actually does. By
reasoning from this, a diagnoser can find errors. The information needed can be found
by asking the user a formal specification (which can be an extensive description of the
intended program behavior or an older correct version of the program). The entity that
provides the diagnoser with information is referred to as the oracle.

The declarative debugging method consists in two main techniques: incorrectness error
diagnosis and insufficiency error diagnosis. The principal idea to find incorrectness errors is
to inspect the proof tree constructed for an incorrectness symptom. To find the erroneous
declaration the diagnoser traverses the proof tree. At each node it asks the oracle about
the validity of the corresponding atom. With the aid of the answers the diagnoser can
identify the erroneous declaration. Dually, insufficiency error diagnosis concerns the case
when a program fails to compute some expected results. The objective for insufficiency
diagnosis is to scrutinize the attempt to construct a proof for a result which incorrectly
fails (or suspends).

An alternative approach to declarative debugging is abstract diagnosis which is a com-
pletely automatic debugging methodology based on abstract interpretation. It was origi-
nally proposed for logic programming [25] and later has been applied to other paradigms
[1, 8, 51]. This approach allows one to reason only on the abstract properties of interest.
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In this way, it simplifies the user the task of providing the specification. Abstract diagnosis
can be considered as an extension of declarative debugging, since there are instances of the
framework that deliver the same results. The intuition of the approach is that, given an
abstract specification of the expected behavior of the program, one automatically detects
the errors in the program. In order to achieve an effective method, abstract interpretation
is used to approximate the semantics, thus results may be less precise than those obtained
by using the concrete semantics.

Abstract diagnosis is parametric w.r.t. an abstract program property and it is based
on the approximation of a concrete semantics expressed in terms of the least fixpoint of
an immediate consequence operator D.

The abstract diagnosis methodology can be described as follows. An “abstract im-
mediate consequence operator” Dα is obtained by approximating the concrete immediate
consequence operator D. Given the abstract intended specification Sα of the behavior
of the considered program P , we can check the correctness of P by a single application
of DαJP K and thus, by a static test, we can determine all the process declarations d ∈ P
which are wrong w.r.t. the considered abstract property.

Abstract diagnosis has some advantages w.r.t. declarative debugging. First of all,
abstract diagnosis is a fully-automatic approach, while declarative diagnosis needs the
intervention of an oracle during the debugging process. Abstract diagnosis avoids the
need to provide symptoms in advance, while declarative debugging is a symptom driven
approach. If an error symptom is caused by more than one bug, declarative debugging has
to be reapplied in order to detect all the bugs related to the same error symptom. On the
contrary, abstract diagnosis is able to detect all these errors in one single application of
the method. The major drawback of abstract diagnosis is that, because of the abstraction,
the method can lead to false positives. By approximating, we renounce to the precision of
the obtained result, i.e., also correct parts of the code may be pointed out as erroneous.
However, the main point is that erroneous code cannot be validated as correct, thus
abstract diagnosis is suitable to validate critical systems in an efficient way. Using abstract
properties as specifications is an advantage because it relieves the user from having to
specify in excessive detail the program behavior, which could be more error prone than
the coding itself. The choice of an abstract domain is, thus, a trade-off between the
precision of errors that can be detected and the effort in providing the specification.

I.4 Thesis Approach

In this thesis, we propose a semantics based abstract interpretation framework for the
language tccp in order to define debugging and verification tools for concurrent and reactive
systems.

As said before, these systems strongly depend on time and interact continuously with
the environment for an infinite period. For these reasons, the observation of the input-
output behavior is not adequate since it is concerned only with finite computations and
does not shows the evolution of the computation over time. We are interested, instead,
in the small-step behavior, i.e., how the program evolves at each time instant, also for
infinite computations.

As already pointed out, the definition of an appropriate concrete semantics, which
models the behavior of interest, is a key point in abstract interpretation [31]. For this
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reason, in this thesis much effort has been devoted to the definition of a denotational
semantics for tccp that is fully-abstract w.r.t. the small-step behavior of the language and
that meets all the properties listed in Section I.3.2.

We propose a new compositional, condensed, goal-independent and bottom-up seman-
tics for tccp that is fully-abstract w.r.t. the small-step behavior of the language and that
is able to deal also with infinite computations. In our semantics, we associate, to each
program a set of sequences representing its behavior in a condensed way. These sequences,
called conditional state traces, contain the minimal information needed to represent a set
of tccp behavioral traces, namely, the conditions that have to be satisfied at each time
instant and the information introduced in the global store by the program. Due to its good
properties, our semantics is shown to be suitable for verification and debugging purposes
based on abstract interpretation.

We define also a big-step semantics (by abstraction of our small-step semantics) which
tackles also outputs of infinite computations. We prove that its fragment for finite compu-
tations is (essentially) isomorphic to the traditional big-step semantics of [43]. Moreover,
we also formally prove that it is not possible to have a correct input-output fixpoint se-
mantics which is defined solely on the information provided by the input/output pairs
(i.e., some more information into denotations is needed).

Another contribution of this thesis is the definition of a general abstract diagnosis
scheme for tccp which is parametric to the desired properties to be verified. These prop-
erties are modeled by means of a suitable abstract domain which approximate the domain
of conditional state traces.

We show two instances of this abstract diagnosis scheme by using two different abstract
domains: a domain of abstract conditional state traces and a domain of temporal logic
formulas.

In the first case, starting from our semantics, we deduce, using standard abstract
interpretation techniques, an approximated semantics based on the abstraction of the
underlying constraint system. The elements of the abstract domain are compact abstract
traces which contain approximated information. This domain is suitable for verification
features since it allows to express in a compact way the properties of both finite and
infinite computations. Given a tccp program and an (abstract) behavior specification, we
apply abstract diagnosis [25] to automatically detect if the program meets the desired
specification. In this way, we obtain a fully-automatic verification method for tccp.

Similarly, we define an abstract semantics for tccp based on temporal logic formulas. In
order to express tccp properties, we add constraints to the classical LTL by defining a new
logic that we call csLTL (constraint system LTL). Intuitively, a csLTL formula represents
the set of tccp conditional traces that satisfies that formula. As in the case of abstract
traces, we can apply abstract diagnosis to obtain a fully-automatic verification method
that checks if a tccp program satisfies a given formula. This method intuitively consists in
viewing a tccp program P as a formula transformer and thus, in order to decide the validity
of φ, we just have to check if the P -transformation of φ implies φ. The transformation
has a cost which is linear in the program’s size, and thus the computational cost of the
whole method is due to the check of the implication.

In order to make the method effective we provide an automatic decision procedure
for our csLTL logic. This procedure is the extension to csLTL of the tableau algorithm
proposed in [58, 60] for propositional LTL.
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I.5 Thesis Overview

The thesis is organized as follows:

In Chapter 1 we introduce the basic concepts, terminologies and notations used in this
thesis.

In Chapter 2 the tccp language is presented in detail joint to its operational semantics
which slightly differs from the original one defined in [43].

In Chapter 3 our new denotational semantics for tccp is introduced. We show its
correctness and full-abstraction w.r.t. the operational small-step behavior. Illustrative
examples for the main concepts are also included. In this chapter we also define the
big-step semantics and we formally relate it to the original one of [43].

In Chapter 4 a general abstract diagnosis scheme for tccp based on Galois insertions
is presented. By using standard abstract interpretation results we define a new abstract
semantics for tccp which is correct by construction. This semantics associates a tccp
program to a set of traces which contain approximated information. We exhibit an instance
of the abstract diagnosis scheme that uses this abstract semantics and we show some
examples of application of this method.

In Chapter 5 we present a different abstract diagnosis framework for tccp based only
on the concretization function. This can be used in case the abstraction function cannot
be defined. We instantiate this scheme with another abstract semantics which associates
a tccp program to a csLTL formula and we show some examples of application of this
method to find bugs in programs. We also present a tableau construction algorithm for
csLTL to show the decidability of our proposal.

Finally, in Chapter 6 the implementation of our framework is discussed.

To improve the readability of the thesis, the most technical definitions, results and all
the proofs can be found in the related chapter appendix.

I.6 Publications related to this thesis

In this section we list the publications related to this thesis.

In the work “Abstract Diagnosis for Timed Concurrent Constraint programs” [26] a
first version of our small-step semantics for tccp (Section 3.1) is presented. Furthermore, a
first approach to the abstract diagnosis of tccp programs (Chapter 4) is introduced. This
work was presented at the 27th International Conference on Logic Programming (ICLP
2011) and then it appeared in the related special issue of the journal Theory and Practice
of Logic Programming.

A first proposal of our tableau construction algorithm for csLTL (Section 5.5) was
defined in the work “Towards an Effective Decision Procedure for LTL formulas with
Constraints” [28] which was presented at the 23rd Workshop on Logic-based methods in
Programming Environments (WLPE 2013).

The article “Abstract Diagnosis for tccp using a Linear Temporal Logic” [29] contains
our abstract diagnosis approach based on temporal formulas together with the tableau
construction algorithm that makes the method effective (Chapter 5). This article has
been accepted for presentation at the 30th International Conference on Logic Programming
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and Practice of Logic Programming.



Publications related to this thesis xix

The article “A Condensed Goal-Independent Bottom-Up Fixpoint Modeling the Be-
havior of tccp” [27] contains the definition of our novel small-step semantics for tccp joint
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1
Preliminaries

This chapter presents the basic notations and concepts we will use through this thesis.
Some more specific notions will be introduced in the chapters where they are needed.

Sections 1.1 and 1.2 are taken from [24]. For the terminology not explicitly shown and
for a complete introduction about fixpoint theory and algebraic notation, the reader can
consult [15, 14, 77]. We will refer to [104] for further details on the concurrent constraint
paradigm. In [78] the reader can find a complete introduction to Linear Temporal Logic.

1.1 Basic Set Theory

To define the basic notions we will use the standard (meta) logical notation denoting
conjunction, disjunction, quantification and so on (and, or, for each, . . . ). For statements
(or assertions) A and B, we will commonly use abbreviations like:

A,B for (A and B), the conjunction of A and B,

AÔ⇒B for (A implies B), or (if A then B), which express the logical implication,

A⇐⇒B for (A if and only if B), which expresses the logical equivalence of A and B.

We will also make statements by forming disjunctions (A or B), with the self-evident
meaning, and negations (not A), sometimes written ¬A, which is true if and only if A is
false.

A statement like P (x, y), which involves variables x, y, is called a predicate and
it becomes true when the pair x, y satisfies the property (or relation, or condition)
modeled by P . We use logical quantifiers ∃ (read “there exists”) and ∀ (read “for
all”) to write assertions like ∃x.P (x) as abbreviating “for some x, P (x)” or “there ex-
ists x such that P (x)”, and ∀x.P (x) as abbreviating “for all x, P (x)” or “for any x,
P (x)”. The statement ∃x, y, . . . , z. P (x, y, . . . , z) abbreviates ∃x.∃y.⋯∃z.P (x, y, . . . , z),
and ∀x, y, . . . , z. P (x, y, . . . , z) abbreviates ∀x.∀y.⋯∀z.P (x, y, . . . , z). In order to specify
a set S over which a quantifier ranges, we write ∃x ∈ S.P (x) instead of ∃x.x ∈ S,P (x),
and ∀x ∈ S.P (x) instead of ∀x.x ∈ S Ô⇒ P (x).

1.1.1 Sets

Intuitively, a set is an (unordered) collection of objects. These objects are called elements
(or members) of the set. We write a ∈ S when a is an element of the set S. Moreover, we
write {a, b, c, . . .} for the set of elements a, b, c, . . ..
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A set S is said to be a subset of a set S′, written S ⊆ S′, if and only if every element
of S is an element of S′, i.e., S ⊆ S′ ⇐⇒ ∀z ∈ S. z ∈ S′. A set is determined only by its
elements, so, sets S and S′ are equal, written S = S′, if and only if every element of S is
an element of S′ and vice versa.

Sets and Properties

A set can be determined by a property P . We write S ∶= {x ∣P (x)}, meaning that the set
S has as elements precisely all those x for which P (x) is true. We will not be formal about
it, but we will avoid trouble like Russell’s paradox (see [102]) and will have at the same
time a world of sets rich enough to support most mathematics. This will be achieved by
assuming that certain given sets exist right from the start and by using safe methods for
constructing new sets.

We write ∅ for the null or empty set and N for the set of natural numbers 0,1,2, . . ..
The cardinality of a set S is denoted by ∣S∣. A set S is called denumerable if ∣S∣ = ∣N∣ and
countable if ∣S∣ ≤ ∣N∣.

Constructions on Sets

Let S be a set and P (x) be a property. {x ∈ S ∣P (x)} denotes the set {x ∣x ∈ S,P (x)}.
Sometimes, we will use a further abbreviation. Let E(x1, . . . , xn) be an expression which
represents a particular element for x1 ∈ S1, . . . , xn ∈ Sn and P (x1, . . . , xn) is a property of
such x1, . . . , xn. We use {E(x1, . . . , xn) ∣x1 ∈ S1, . . . , xn ∈ Sn, P (x1, . . . , xn)} to abbreviate
{y ∣ ∃x1 ∈ S1, . . . , xn ∈ Sn. y = E(x1, . . . , xn), P (x1, . . . , xn)}.

The powerset of a set S, {S′ ∣ S′ ⊆ S}, is denoted by ℘(S).
Let I be a set. By {xi}i∈I (or {xi ∣ i ∈ I}) we denote the set of (unique) objects xi, for

any i ∈ I. The elements xi are said to be indexed by the elements i ∈ I.
The union of two sets is S ∪ S′ ∶= {a ∣a ∈ S or a ∈ S′}. Let S be a set of sets,

⋃S = {a ∣ ∃S ∈ S. a ∈ S}. When S = {Si}i∈I , for some indexing set I, we write ⋃S as

⋃i∈I Si. The intersection of two sets is S ∩ S′ ∶= {a ∣a ∈ S, a ∈ S′}. Let S be a nonempty
set of sets. Then ⋂S ∶= {a ∣ ∀S ∈ S. a ∈ S}. When S = {Si}i∈I we write ⋂S as ⋂i∈I Si.

The cartesian product of S and S′ is the set S × S′ ∶= {(a, b) ∣a ∈ S, b ∈ S′}, the set of
ordered pairs of elements with the first from S and the second from S′. More generally
S1 ×S2 ×⋯×Sn consists of the set of n-tuples (x1, . . . , xn) with xi ∈ Si and Sn denotes the
set of n-tuples of elements in S.

S ∖ S′ denotes the set where all the elements from S, which are also in S′, have been
removed, i.e., S ∖ S′ ∶= {x ∣x ∈ S,x /∈ S′}.

1.1.2 Relations and Functions

A binary relation between S and S′ (R∶S ×S′) is an element of ℘(S ×S′). We write x R y
for (x, y) ∈ R.

A partial function from S to S′ is a relation f ⊆ S × S′ for which ∀x, y, y′. (x, y) ∈

f, (x, y′) ∈ f Ô⇒ y = y′. By f ∶S ⇀ S′ we denote a partial function of the set S (the
domain) into the set S′ (the range). The set of all partial functions from S to S′ is
denoted by [S ⇀ S′]. Moreover, we use the notation f(x) = y when there is a y such that
(x, y) ∈ f and we say f(x) is defined, otherwise f(x) is undefined. Sometimes, when f(x)
is undefined, we write f(x) ∈ ℵ, where ℵ denotes the set of undefined elements. For each
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set S we assume that ℵ ⊆ S, ℵ ∪ S = S and ∅ /⊆ ℵ. This will be formally motivated in
Section 1.2.1.

Given a partial function f ∶S ⇀ S′, the sets supp(f) ∶= {x ∈ S ∣ f(x) is defined} and
img(f) ∶= {f(x) ∈ S′ ∣ ∃x ∈ S. f(x) is defined} are, respectively, the support and the image
of f . A partial function is said to be finite-support if supp(f) is finite. Moreover, it is said
to be finite if both supp(f) and img(f) are finite.

In the following, we will often use finite-support partial functions. Hence, to simplify
the notation, by

f ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

v1 ↦ r1

⋮

vn ↦ rn

we will denote (by cases) any function f which assumes on input values v1, . . . , vn output
values r1, . . . , rn and is otherwise undefined. Furthermore, if the support of f is just the
singleton {v}, we will denote it by f ∶= v ↦ r.

A total function f from S to S′ is a partial function such that, for all x ∈ S, there
is some y ∈ S′ such that f(x) = y (supp(f) = S). As in tradition, when we talk about
a function we are referring to a total function, so, we will always say explicitly when a
function is partial. To indicate that a function f from S to S′ is total, we write f ∶S → S′.
Moreover, the set of all (total) functions from S to S′ is denoted by [S → S′].

A function f ∶S → S′ is injective if and only if, for each x, y ∈ S, if f(x) = f(y) then
x = y. f is surjective if and only if, for each x′ ∈ S′, there exists x ∈ S such that f(x) = x′.

We denote by f = g the extensional equality, i.e., for each x ∈ S, f(x) = g(x).

Lambda Notation

Lambda notation provides a way of referring to functions without having to name them.
Let f ∶S → S′ be a function that for any element x ∈ S, gives a value f(x) which is
exactly described by expression E. We can express the function f as λx ∈ S.E. Thus,
(λx ∈ S.E) ∶= {(x,E[x]) ∣x ∈ S} and so λx ∈ S.E is just an abbreviation for the set of
input-output values determined by the expression E[x]. We use the lambda notation also
to denote partial functions by allowing expressions in lambda-terms that are not always
defined. Hence, a lambda expression λx ∈ S.E denotes a partial function S ⇀ S′ which, on
input x ∈ S, assumes the value E[x] ∈ S′ if the expression E[x] is defined, and otherwise
it is undefined.

Composing Relations and Functions

The composition of two relations R ∶ S × S′ and Q ∶ S′ × S′′ is a relation between S and
S′′ defined as Q ○ R ∶= {(x, z) ∈ S × S′′ ∣ y ∈ S′, (x, y) ∈ R, (y, z) ∈ Q}. Rn is the relation
R ○ ⋯ ○R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

, i.e., R1 ∶= R and (assuming Rn is defined) Rn+1 ∶= R ○ Rn. Each set S is

associated with an identity function IdS ∶= {(x,x) ∣x ∈ S}, which is the neutral element of
○. Thus we define R0 ∶= IdS .

The transitive and reflexive closure R∗ of a relation R on S is R∗ ∶= ⋃i∈NR
i.
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The function composition of g∶S ⇀ S′ and f ∶S′ ⇀ S′′ is the partial function f ○
g∶S ⇀ S′′, where (f ○ g)(x) ∶= f(g(x)), if g(x) (first) and f(g(x)) (then) are defined, and
otherwise it is undefined. When it is clear from the context ○ will be omitted.

A function f ∶ S → S′ is bijective if it has an inverse g∶S′ → S, i.e., if and only if there
exists a function g such that g ○ f = IdS and f ○ g = IdS′ . Then the sets S and S′ are said
to be in one-to-one correspondence. Any set in one-to-one correspondence with a subset
of natural numbers N is said to be countable. Note that a function f is bijective if and
only if it is injective and surjective.

Direct and Inverse Image of a Relation

We extend a relation R∶S × S′ to functions on subsets by taking R(X) ∶= {y ∈ S′ ∣ ∃x ∈

X. (x, y) ∈ R} for X ⊆ S. The set R(X) is called the direct image of X under R. The
inverse image of Y under R is defined as R−1(Y ) ∶= {x ∈ S ∣ ∃y ∈ Y. (x, y) ∈ R} for Y ⊆ S′.
Thus, if f ∶S ⇀ S′ is a partial function, X ⊆ S and X ′ ⊆ S′, we denote by f(X) the image
of X under f , i.e., f(X) ∶= {f(x) ∣x ∈ X} and by f−1(X ′) the inverse image of X ′ under
f , i.e., f−1(X ′) ∶= {x ∣ f(x) ∈X ′}.

Equivalence Relations and Congruences

An equivalence relation ≈ on a set S is a binary relation on S (≈∶S ×S) such that, for each
x, y, z ∈ S,

x R x (reflexivity)

x R yÔ⇒ y R x (symmetricity)

x R y, y R z Ô⇒ x R z (transitivity)

The equivalence class of an element x ∈ S, with respect to ≈, is the subset [x]≈ ∶= {y ∣x ≈ y}.
When clear from the context, we abbreviate [x]≈ by [x] and often abuse notation by letting
the elements of a set denote their correspondent equivalence classes. The quotient set S/

≈

of S modulo ≈ is the set of equivalence classes of elements in S (w.r.t. ≈).
An equivalence relation ≈ on S is a congruence w.r.t. a partial function f ∶ Sn ⇀ S if

and only if, for each pair of elements ai, bi ∈ S such that ai ≈ bi, if f(a1, . . . , an) is defined
then also f(b1, . . . , bn) is defined, and, furthermore, f(a1, . . . , an) ≈ f(b1, . . . , bn). Then, we
can define the partial function f≈∶ (S/≈)

n ⇀ S/
≈

as f≈([a1]≈, . . . , [an]≈) ∶= [f(a1, . . . , an)]≈,
since, given [a1]≈, . . . , [an]≈, the class [f(a1, . . . , an)]≈ is uniquely determined indepen-
dently of the choice of the representatives a1, . . . , an.

1.2 Domain Theory

In this section we present the (abstract) concepts of complete lattices, continuous functions
and fixpoint theory, which are the standard tools for the definition of a denotational
semantics.

1.2.1 Complete lattices and continuous functions

A binary relation ≤ on S (≤∶S × S) is a partial order if, for each x, y ∈ S,

x ≤ x (reflexivity)
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x ≤ y, y ≤ xÔ⇒ x = y (antisymmetry)

x ≤ y, y ≤ z Ô⇒ x ≤ z (transitivity)

A partially ordered set (poset) (S, ≤) is a set S equipped with a partial order ≤. A set S
is totally ordered if it is partially ordered and, for each x, y ∈ S, x ≤ y or y ≤ x. A chain is
a (possibly empty) totally ordered subset of S.

A preorder is a binary relation which is reflexive and transitive. A preorder ≤, on a set
S, induces on S an equivalence relation ≈ defined as follows: for each x, y ∈ S,

x ≈ y⇐⇒ x ≤ y, y ≤ x.

Moreover, ≤ induces on S/
≈

the partial order ≤≈ such that, for each [x]≈, [y]≈ ∈ S/≈,

[x]≈ ≤≈ [y]≈ ⇐⇒ x ≤ y.

A binary relation < is strict if and only if it is anti-reflexive (i.e., not x < x) and
transitive.

Given a poset (S, ≤) and X ⊆ S, y ∈ S is an upper bound for X if and only if, for each
x ∈ X, x ≤ y. Moreover, y ∈ S is the least upper bound (called also join) of X, if y is an
upper bound of X and, for every upper bound y′ of X, y ≤ y′. A least upper bound of X
is often denoted by lubSX or by ⊔SX. We also write ⊔S{d1, . . . , dn} as d1 ⊔S ⋯ ⊔S dn.
Dually, an element y ∈ S is a lower bound for X if and only if, for each x ∈ X, y ≤ x.
Moreover, y ∈ S is the greatest lower bound (called also meet) of X, if y is a lower bound
of X and for every lower bound y′ of X, y′ ≤ y. A greatest lower bound of X is often
denoted by glbSX or by ⊓SX. We also write ⊓S{d1, . . . , dn} as d1 ⊓S⋯⊓S dn. When it is
clear from the context, the subscript S will be omitted. Moreover, ⊔{Di}i∈I and ⊓{Di}i∈I
can be denoted by ⊔i∈I Di and ⊓i∈I Di. It is easy to check that if lub and glb exist, then
they are unique.

Complete Partial Orders and Lattices

A direct set is a poset in which any subset of two elements (and hence any finite subset)
has an upper bound in the set. A complete partial order (CPO) S is a poset such that
every chain D has the least upper bound (i.e., there exists ⊔D). Notice that any set
ordered by the identity relation forms a CPO, of course without a bottom element. Such
CPOs are called discrete. We can add a bottom element to any poset (S, ≤) which does
not have one (even to a poset which already has one). The new poset S� is obtained by
adding a new element � to S and by extending the ordering ≤ as ∀x ∈ S.� ≤ x. If S is a
discrete CPO, then S� is a CPO with bottom element, which is called flat.

A complete join-semilattice (respectively complete meet-semilattice) is a poset (S, ≤)
such that, for every subset X of S, there exists ⊔X (respectively ⊓X).

A complete lattice is a poset (S, ≤) such that, for every subset X of S, there exists

⊔X and ⊓X. Let ⊺ denote the top element ⊔S = ⊓∅ and � denote the bottom element

⊓S = ⊔∅ of S. The elements of a complete lattice can be seen as points of information,
and the ordering as an approximation relation between them. Thus, x ≤ y means x
approximates y (or, x has less or the same information as y) and so � is the point of least
information. It is easy to check that, for any set S, ℘(S) under the subset ordering ⊆ is
a complete lattice, where the least upper bound is the union, the greatest lower bound is
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the intersection, the top element is S, and the bottom element is ∅. Also (℘(S))� is a
complete lattice.

Given a complete lattice (L, ≤), the set of all partial functions F = [S ⇀ L] inherits
the complete lattice structure of L. Let simply define f ⪯ g ∶= ∀x ∈ S. f(x) ≤ g(x),
(f ⊔ g)(x) ∶= f(x) ⊔ g(x), (f ⊓ g)(x) ∶= f(x) ⊓ g(x), �F ∶= λx ∈ S.�L and ⊺F ∶= λx ∈ S.⊺L.

Continuous and Additive Functions

Let (L, ≤) and (M, ⊑) be (complete) lattices. A function f ∶L → M is monotonic if and
only if

∀x, y ∈ L.x ≤ yÔ⇒ f(x) ⊑ f(y).

Moreover, f is continuous if and only if, for each non-empty chain D ⊆ L,

f(⊔
L

D) = ⊔
M

f(D).

Every continuous function is also monotonic, since x ≤ y implies f(⊔L{x, y}) = f(y), by
continuity ⊔M{f(x), f(y)} = f(⊔L{x, y}), which implies that f(x) ⊑ f(y), since f(x) ⊑

⊔M{f(x), f(y)} and we have already seen that f(⊔L{x, y}) = f(y).
Complete partial orders correspond to types of data (which can be used as input or

output to a computation) and computable functions are modeled as continuous functions
between them.

A partial function f ∶S ⇀ S′ is additive if and only if the previous continuity condition
is satisfied for each non-empty set. Hence, every additive function is also continuous.
Dually we define co-continuity and co-additivity , by using ⊓ instead of ⊔.

It can be proven that the composition of monotonic, continuous or additive functions
is, respectively, monotonic, continuous or additive.

The mathematical way of expressing that two structures are “essentially the same”
is given through the concept of isomorphism. A continuous function f ∶D → E between
CPOs D and E is said to be an isomorphism if there is a continuous function g∶E → D
such that g ○ f = IdD and f ○ g = IdE (f and g are mutual inverses). It follows from
the definition, that two isomorphic CPOs are essentially the same but for a renaming of
elements. It can be proven that a function f ∶D → E is an isomorphism if and only if f is
bijective and, for all x, y ∈D, x ≤D y⇐⇒ f(x) ≤E f(y).

Function Space

Let D,E be CPOs, the function space [D → E] consists of continuous functions f ∶D → E
ordered pointwise by f ⊑ g⇐⇒ ∀d ∈D.f(d) ⊑ g(d). Note that, if E has a bottom element
�E , also [D → E] has a bottom element: the constantly �E function �[D→E] ∶= λd ∈D.�E .
Least upper bounds of chains of functions are given pointwise, i.e., a chain of functions
f0 ⊑ f1 ⊑ . . . ⊑ fn ⊑ . . . has lub ⊔[D→E] fn ∶= λd ∈ D. ⊔E{fn(d)}n∈N. It is easy to see that
[D → E] forms a complete partial order with the order relation ⊑.

Partial functions L ⇀ D are in one-to-one correspondence with (total) functions L →
D�, and, in this case, any total function is continuous. The inclusion order between partial
functions corresponds to the “pointwise order” f ⊑ g ⇐⇒ ∀σ ∈ L. f(σ) ⊑ g(σ) between
functions L → D�. Since partial functions can be undefined on some input, to keep the
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correctness of the “pointwise order”, we assume that, for each set S, ℵ ⊆ S, ℵ∪S = S and
∅ /⊆ ℵ (see Section 1.1.2).

1.2.2 Fixpoint Theory

Given a poset (S, ≤) and a function f ∶S → S, a fixpoint of f is an element x ∈ S such
that f(x) = x. A pre-fixpoint of f is an element x ∈ S such that f(x) ≤ x and, dually, a
post-fixpoint of f is an element x ∈ S such that x ≤ f(x). Moreover, we say that x ∈ S
is the least fixpoint of f (denoted by lfp f) if and only if x is a fixpoint of f and for all
fixpoints y of f , x ≤ y. Dually, we define the greatest fixpoint (denoted by gfp f).

The fundamental theorem of Knaster-Tarski states that the set of fixpoints of a mono-
tonic function f is a complete lattice.

Theorem 1.2.1 (Knaster-Tarski Fixpoint theorem [114]) A monotonic function f
on a complete lattice (L, ≤) has the least fixpoint and the greatest fixpoint. Moreover,

lfp(f) = ⊓{x ∣ f(x) ≤ x} = ⊓{x ∣ x = f(x)}

gfp(f) = ⊔{x ∣ x ≤ f(x)} = ⊔{x ∣ x = f(x)}.

The Knaster-Tarski Theorem is important because it applies to any monotone function
on a complete lattice. However, most of the time we will be concerned with least fixpoints
of continuous functions which we will construct by the techniques of the previous section,
as least upper bounds of chains in a complete lattice. Therefore, it is useful to state some
more notations and results on fixpoints of continuous functions defined on (complete)
lattices.

First of all, we have to introduce the notion of ordinal . We assume that an ordinal is a
set where every element of an ordinal is still an ordinal and the class of ordinals is ordered
by membership relation (α < β means α ∈ β). Consequently, every ordinal coincides with
the set of all smaller ordinals. The least ordinals are 0, 1 ∶= {0}, 2 ∶= {0,{0}}, etc..
Intuitively, the class of ordinals is the transfinite sequence 0 < 1 < 2 < . . . < ω < ω + 1 < . . . <
ω + ω < . . . < ωω, etc.. Ordinals will be often denoted by Greek letters. An ordinal γ is a
limit ordinal if it is neither 0 nor the successor of an ordinal; so, if β < γ, then there exists
σ such that β < σ < γ. The first limit ordinal, which is equipotent with the set of natural
numbers, is denoted (by an abuse of notation) by ω. Often, in the definitions of CPO and
of continuity, directed sets are used instead of chains. It is possible to show that if the set
S is denumerable, then the definitions are equivalent.

The ordinal powers of a monotonic function T ∶S → S on a CPO S are defined as

T ↑α(x) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x if α = 0

T (T ↑(α − 1)(x)) if α is a successor ordinal

⊔{T ↑β(x) ∣ β < α} if α is a limit ordinal.

In the following, we will use the standard notation T ↑α ∶= T ↑α(�), where � is the bottom
of S. In particular, T ↑ω ∶= ⊔n<ω T ↑n, T ↑n+ 1 ∶= T (T ↑n), for n < ω, and T ↑0 ∶= �, where ⊔
is the lub operation of S. Sometimes, T ↑α(x) may be denoted simply by Tα(x).

The next important result is usually attributed to Kleene and gives an explicit con-
struction of the least fixpoint of a continuous function f on a CPO D.
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Theorem 1.2.2 (Kleene Fixpoint theorem) Let f ∶D → D be a continuous function
on a CPO D, and d ∈D be a pre-fixpoint of f . Then ⊔{f↑n(d) ∣ n ≤ ω} is the least fixpoint
of f greater than d. In particular f↑ω is the least pre-fixpoint and least fixpoint of f .

Each CPO D with bottom � is associated with a fixpoint operator fix ∶ [D → D] → D,
fix ∶= ⊔n<ω(λf. f

n(�)), i.e., fix is the least upper bound of the chain of the functions
λf.� ⊑ λf. f(�) ⊑ λf. f(f(�)) ⊑ . . ., where each of these is continuous and, therefore, it is
an element of the CPO [[D →D] →D].

1.3 Abstract Interpretation

Abstract interpretation [31, 33] is a general approximation theory for reasoning about
semantic properties of discrete dynamic systems. The abstract semantics is an approxi-
mation of the concrete one, where exact (concrete) values are replaced by approximated
(abstract) values, which model some interesting properties on the program execution. In
this section we present the theoretical foundation and the principal results of abstract
interpretation theory which will be used in this thesis.

1.3.1 Closures on complete lattices

Closures play a fundamental role in semantics and approximation theory [33]. In the
following, we recall some basic notions on closure theory. For a more complete treatment
of the subject see [14, 32]. A closure operator on a complete lattice (L, ≤) is an operator
ρ∶L→ L such that, for each x, y ∈ L,

x ≤ ρ(x) (extensivity)

x ≤ yÔ⇒ ρ(x) ≤ ρ(y) (monotonicity)

ρ(ρ(x)) = ρ(x) (idempotence)

Let (L, ≤) be a complete lattice, in the following, we enumerate some basic properties
of closure operators on L. Let ρ be an upper closure operator on (L, ≤).

• For all x ∈ L, the set {y ∈ ρ(L) ∣x ≤ y} is not empty and ρ(x) is the least element.

• The image R ∶= ρ(L) of L by ρ is a complete lattice (R, ≤), such that ⊔R(X) =

ρ(⊔L(X)) and ⊓R(X) = ⊓L(X).

• ρ is a quasi-complete-join-morphism, i.e., for each X ⊆ L, ρ(⊔(X)) = ρ(⊔(ρ(X))).

• Let R ⊆ L and ρ∶L → R such that, for any x ∈ L, ρ(x) is the least element in
{y ∈ R ∣x ≤ y}. Then ρ is an upper closure operator on (L, ≤) and R ∶= ρ(L).

• Let uco(L) be the set of all upper closure operators on L. Then (uco(L), ⪯) is a
complete lattice, where ⪯ is defined as follows. For each ρ, ρ′ ∈ uco(L),

ρ ⪯ ρ′ ⇐⇒ ∀x ∈ L.ρ(x) ≤ ρ′(x).
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1.3.2 Galois Connections

Abstract interpretation theory requires the two semantics (concrete and abstract) to be
defined on domains which are partially ordered sets. (C, ⊑) (the concrete domain) is the
domain of the concrete semantics, while (A, ≤) (the abstract domain) is the domain of
the abstract semantics. The partial order relations reflect an approximation relation.

The concrete and the abstract interpretation are related by a pair of functions, the
abstraction α and the concretization γ, which form a Galois Connection. This notion has
been introduced in [91] to discuss a general type of correspondence between structures
occurring in a great variety of mathematical theories.

Galois Connections can be defined on partially ordered sets. However, in this thesis
we restrict our attention to complete lattices since they meet stronger properties.

In approximation theory, a partial order specifies the precision degree of any element
in a poset. Thus, it is obvious to assume that, if α is a mapping associating an abstract
object in (A, ≤) to any concrete element x in (C, ⊑), the following holds: if α(x) ≤ y, then
y is also a correct, although less precise, abstract approximation of x. The same argument
holds if x ⊑ γ(y). Then y is also a correct approximation of x, although x provides more
accurate information than γ(y). This gives rise to the following formal definition.

Definition 1.3.1 (Galois Connection) Let (C, ⊑, ⊔, ⊓, ⊺, �) and (A, ≤, ⋁, ⋀, ⊺, �) be

two complete lattices. A Galois Connection (C, ⊑) −−−−→←−−−−α

γ
(A, ≤) is a pair of maps α ∶ C→A

and γ ∶ A→C such that, for each x ∈ C and y ∈ A,

α(x) ≤ y⇐⇒ x ⊑ γ(y) (1.3.1)

Moreover, a Galois Insertion (of A in C) (C, ⊑) −−−−→Ð→←−−−−−
α

γ
(A, ≤) is a Galois connection

where α is surjective.

An equivalent definition of Galois Connection is a pair of maps α ∶ C→A and γ ∶ A→
C such that:

Monotonicity. The maps α and γ are monotonic.
Extensivity. For each x ∈ C, x ⊑ (γ ○ α)(x).
Reductivity. For each y ∈ A, (α ○ γ)(y) ≤ y.

When, in a Galois Connection −−−−→←−−−−α

γ
, γ is not injective, several distinct elements of the

abstract domain (A, ≤) have the same meaning (by γ). This is usually considered useless
[33]; in this situation a Galois Insertion can always be forced by considering a more concise

abstract domain (A/γ
≈
, ≤/γ

≈
), such that for each x, y ∈ A. x

γ
≈ y⇐⇒ γ(x) = γ(y).

The following basic properties are satisfied by any Galois Connection:

1. γ is injective if and only if α is surjective if and only if α ○ γ = idA;

2. α is injective if and only if γ is surjective if and only if γ ○ α = idC;

3. α is additive (α(⊔X) = ⋁α(X)) and γ is co-additive (γ(⋀Y ) = ⊓γ(Y ));

4. α and γ uniquely determine each other:

γ(y) = ⊔{x ∈ C ∣ α(x) ≤ y}, α(x) = ⋀{y ∈ A ∣ x ⊑ γ(y)};
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5. γ ○ α is an upper closure operator in (C, ⊑).

6. α is an isomorphism from (γα)(C) to A, having γ as its inverse.

It follows immediately from Property 1 that in the case of Galois Insertions, the Prop-
erty Reductivity in the alternative definition of Galois Connection is equivalent to state
that (α ○ γ) = idA for each y ∈ A.

Because of Property 4 the map α (respectively γ) is called the lower (respectively up-
per) adjoint . Properties 5 and 6 characterize the ability of Galois Connections to formalize
the notion of “machine-representable” abstractions. An abstract domain is isomorphic (up
to representation) to an upper closure operator of the concrete domain of the computation
C. Thus, in principle, we can handle abstract computations as concrete computations on
the complete lattice which is the image of the upper closure operator γ ○ α. However,
machine representable abstractions often result to be more intuitive and provide better
experimental results in efficient implementations.

A straightforward consequence of the latter observation is that abstract interpretations
can be formalized in a hierarchical framework. Abstract domains can be partially ordered
using the ordering on the corresponding closure operators on C. The lattice of abstract
interpretations of C is, then, the lattice of upper closure operators over C. As observed
in [91], the composition of upper closure operators is not (in general) an upper closure
operator. However, an abstract domain can be designed by successive approximations.
Let ρ be an upper closure operator on (C, ⊑) and η be an upper closure operator on ρ(C).
Then η ○ ρ is an upper closure operator on (C, ⊑).

In view of the compositional design of abstract interpretations we have that the com-
position of Galois Connections is a Galois Connection. Several techniques can be used to
systematically derive new abstract interpretations from a given set of abstract domains
[33, 34]. We do not address these techniques because they are outside the scope of this
thesis.

1.3.3 Abstract semantics, correctness and precision

In program analysis based on abstract interpretation, we compute an abstract (fixpoint)
semantics in order to reason about the program behavior. Given a concrete semantics and
a Galois Insertion between the concrete and the abstract domain, we want to define an
abstract semantics. The concrete semantics of a program D is usually formalized as the
least fixpoint of a continuous semantics evaluation function, DJDK∶C→C, on the concrete
domain (C, ⊑). The class of program properties we want to consider is formalized by a
complete lattice (A, ≤). Concrete and abstract domains are related by a Galois Insertion

(C, ⊑) −−−−→Ð→←−−−−−
α

γ
(A, ≤).

An abstract semantic function DaJDK∶A→A is correct if ∀x ∈ C

DJDK(x) ⊑ γ(DaJDK(α(x))).

The resulting abstract semantics lfpA(DaJDK) is a correct approximation of the concrete
one by construction, i.e., α(lfpC(DJDK)) ≤ lfpA(DaJDK).

Moreover, we can systematically derive fromDJDK, α and γ a correct abstract semantic
evaluation function simply asDαJDK ∶= α○DJDK○γ. DαJDK is shown to be the most precise
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and correct abstract counterpart of DJDK, as for any correct DaJDK, DαJDK ≤ DaJDK.
Thus DαJDK is called the optimal abstract version of DJDK.

The abstract semantics lfpA(DαJDK) models a safe approximation of the property of
interest: if the property is verified in lfpA(DαJDK) it will also be verified in lfpC(DJDK).
An analysis method based on the computation of the abstract semantics lfpA(DαJDK) is
effective only if the least fixpoint is reached in finitely many iterations, i.e., if the abstract
domain is Nötherian. If this is not the case, widening operators can be used to ensure the
termination. Widening operators [36] give an upper approximation of the least fixpoint
and guarantee termination by introducing further approximation.

The framework of abstract interpretation is useful to study hierarchies of semantics
and to reconstruct data-flow analysis methods and type systems. It can also be used to
systematically derive “optimal” abstract semantics from the abstract domain and in this
way design efficient verification and analysis methods.

Furthermore, the systematic design aspect can be pushed forward, by using suitable
abstract domain design methodologies (e.g. domain refinements) [55, 62, 64], which allow
one to systematically improve the precision of the domain.

1.3.4 Correctness and precision of compositional semantics

Usually, DαJDK is defined as the composition of “primitive” operators. Let f ∶ Cn → C
be one of these operators and assume that f̃ is its abstract counterpart. Then f̃ is
(locally) correct w.r.t. f if ∀x1, . . . , xn ∈ C. f(x1, . . . , xn) ⊑ γ(f̃(α(x1), . . . , α(xn))). By
replacing all concrete f with the abstract f̃ in the formal definition of DαJDK, we obtain
the definition of an abstract operator DaJDK. The local correctness of all the primitive
operators implies the global correctness (the correctness of DaJDK). Hence, we can define
an abstract semantics by defining locally correct abstract primitive semantic functions.
According to the theory, for each operator f , there exists an optimal (most precise) locally
correct abstract operator f̃ defined as f̃(y1, . . . , yn) = α(f(γ(y1), . . . , γ(yn))). However,
the composition of optimal operators is not necessarily optimal.

The abstract operator f̃ is precise if ∀x1, . . . , xn ∈ C

α(f(x1, . . . , xn)) = f̃(α(x1), . . . , α(xn))

which is equivalent to

α(f(x1, . . . , xn)) = α(f((γ ○ α)(x1), . . . , (γ ○ α)(xn))).

Hence the precision of an optimal abstract operator can be reformulated in terms of
properties of α, γ and the corresponding concrete operator.

There is not currently an agreement on a name for what we call precision. For instance:
[63] calls it full-completeness; [37, 85, 101, 112] use the term completeness; while [39] use
the term optimality for the same notion. We prefer to use the term precision, since
completeness may be confused with the completeness of a semantics.

Note that if ⊔ is the lub operation over (C, ⊑) and −−−−→Ð→←−−−−−
α

γ
is a Galois Insertion then

⊔̃ = α ○ ⊔ ○ γ is the lub of (A, ≤) and is precise, i.e., ⊔̃ ○ α = α ○ ⊔ (which is equivalent to
α ○ ⊔ = α ○ ⊔ ○ γ ○ α).
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1.4 Constraint Systems

A (simple) constraint system [110] is a system of partial information where constraints
can be viewed as elementary tokens which assert some partial information on the current
state. Constraints are related by means of an entailment relation ⊢: given two constraints
c1 and c2, c1 ⊢ c2 holds if and only if c1 “contains ” more information than c2 (i.e., c1 is a
more restrictive constraint than c2).

The notion of constraint systems able to handle queries with existential quantified
variables was first described in [104]. A more elegant formalization, the cylindric constraint
systems, was introduced in [109].

A cylindric constraint system [109, 110] extends the notion of simple constraint system
[109, 110] by borrowing from cylindric algebras the notions of cylindrification operator and
diagonal element [67]. However, since we are dealing with tccp, in this thesis we prefer to
use the formalization of [43].

Definition 1.4.1 (Cylindric constraint system [43]) A cylindric constraint system is
an algebraic structure of the form:

C = ⟨C,⪯,⊗,⊕, false, true,Var ,∃⟩

such that:

1. ⟨C,⪯,⊗,⊕, true, false⟩ is a complete lattice where, following the standard notation,
⊗ is the lub operator, ⊕ is the corresponding glb operator, and true and false are,
respectively, the least and the greatest elements of C. We often use the inverse
order ⊢ (the entailment relation) instead of ⪯ over constraints. Formally ∀c, d ∈ C

c ⪯ d⇔ d ⊢ c.

2. Var is a denumerable set of variables.

3. For each element x ∈ Var, a function (also called cylindric operator) ∃x∶ C → C is
defined such that, for any c, d ∈ C the following axioms hold:

(a) c ⊢ ∃xc

(b) if c ⊢ d then ∃xc ⊢ ∃xd

(c) ∃x(c⊗ ∃xd) = ∃xc⊗ ∃xd

(d) ∃x(∃yc) = ∃y(∃xc)

4. To model parameter passing, diagonal elements are added to the primitive con-
straints. For all x, y ranging over Var, the constraint dxy which satisfies the follow-
ing axioms is added.

(a) true ⊢ dxx

(b) if z ≠ x, y then dxy = ∃z(dxz ⊗ dzy)

(c) if x ≠ y then ∃xy(c⊗ dxy) ⊢ c.

Here the cylindrification (or hiding) operator is defined in terms of a general notion of
existential quantifier. It is used to project away information about the considered variable
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in order to make it local to the constraint and hide it to the context. Diagonal elements
are used to perform variable renaming. For instance the constraint ∃x(dxy ⊗ c) can be
interpreted as the constraint c[y∖x] where all the free occurrences of x are replaced by y.

We abuse in notation by denoting as ∃xC the extension of the existential quantification
to the set of constraints C. Formally, given C ⊆ C, we define ∃xC ∶= {∃x c ∣ c ∈ C}.

We can find in the literature several examples of cylindric constraint systems that are
useful when modeling data structures, logic programs or other specific domains [110, 41,
42, 7]. Let us introduce some examples that we will use throughout the thesis.

The Herbrand constraint system is well-known in the literature [46, 41]:

Cylindric Constraint System 1.4.2 Given an alphabet consisting of variables x, y, ⋅ ⋅ ⋅ ∈
Var, functions symbols f, g, . . . , constant symbols (i.e., function symbols of arity 0) a, b, . . .
and the equality predicate =, the Herbrand cylindric constraint system is the structure
H ∶= ⟨℘(H),⪯H,∪,∩,H,∅,Var ,∃⟩ where:

1. the elements of H are equations t = u where t and u are terms of the alphabet;

2. given H1,H2 ∈ ℘(H), x ∈ Var, t, u, v, ti, ui, vj terms of the alphabet with i = 1 . . . n
and j = 1 . . .m, and f and g distinct function symbols of arity n and m respectively,
the relation ⪯H satisfies the following conditions:

H1 H1 ⊆H2 implies H1 ⪯H H2

H2 {t = t} ⪯H ∅

H3 {t = u} ⪯H {u = t}

H4 {t = u} ⪯H {t = v, v = u}

H5 {f(t1, . . . , tn) = f(u1, . . . , un)} ⪯H {t1 = u1, . . . , tn = un}

H6 for i = 1 . . . n, {ti = ui} ⪯H {f(t1, . . . , tn) = f(u1, . . . , un)}

H7 for every set H ∈ ℘(H), H ⪯H {f(t1, . . . , tn) = g(v1, . . . , vm)}

H8 if x occurs in t and x is syntactically different from t, for every set H ∈ ℘(H),
H ⪯H {x = t};

3. ∃x represent the existential quantifier.

Condition H1 states the consistency of ⪯H w.r.t. the set inclusion. Conditions H2, H3
and H4 stands for the standard axioms of reflexivity, symmetry and transitivity, respec-
tively, while condition H5 corresponds to the notion of substitutivity. Finally, conditions
H6, H7 and H8 model the so-called free-equality axioms ([19]) which enforce the interpre-
tation of the equality = as syntactical identity. In particular, H7 and H8 express the fact
that f(t1, . . . , tn) = g(v1, . . . , vm) and x = t for x occurring in t are equivalent to H.

The following examples are taken from [46, 41]. Figure 1.4 shows graphically an ex-
ample of Herbrand cylindric constraint system with the variable symbols x and y and
the constant symbols a and b. Figure 1.4 represents an example of Herbrand cylindric
constraint system, where the alphabet is formed by a free variable x, a constant sym-
bol a and a monadic function symbol f . Here x = fω represent the limit of the chain
{∃y(x = f

i(y))}i.
The following constraint system allows one to model linear and equality constraints.
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H

{x = a} {y = a} {x = y} {y = b} {x = b}

{x = a, y = a} {x = a, y = b} {x = b, y = a} {x = b, y = b}

∅

Figure 1.1: The Herbrand cylindric constraint system for x, y, a and b

H

{x = fω}

{∃y(x = f(f(y)))}

{∃y(x = f(y))}

∅

{x = f(a)}

{x = a}

Figure 1.2: The Herbrand cylindric constraint system for x, a and f
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Cylindric Constraint System 1.4.3 The domain of constraints L is formed by taking
equivalence classes, modulo logical equivalence ⇔, of finite conjunctions of either linear
disequalities (strict and not) or equalities over Z and Var = {x, y, . . .} (e.g. x > 4, y ≥

10 ∧ w < −3, . . . ). The entailment relation is the implication ⇒ (thus, the order of the
lattice is ⇐). The lub is the conjunction ∧, the glb is the disjunction ∨ and ∃x is the
operation which removes (after information has been propagated within a constraint) all
conjuncts referring to variable x (e.g. ∃x(x = y ∧ x > 3) = y > 3). It can be easily verified
that L ∶= ⟨L,⇐,∧,∨, false, true,Var ,∃⟩ is a cylindric constraint system.

1.5 Linear Temporal Logic

Classical propositional and first-order logics can be used to express properties about pro-
gram states. Each formula represents a set of states that satisfy it, thus, they can be used
to express either an initial or final condition, or an invariant of a program. These logics
are static, in the sense that they can represent a collection of states but not the dynamic
evolution between them during the execution of a program.

Modal logics (see [73]) extend classical logics by including operators expressing modal-
ity. In this way it is possible to describe the relations between different states during the
execution.

Among this family we distinguish temporal logics which are based on temporal modali-
ties. These logics are suitable to express properties about concurrent and reactive systems
where we are not interested only in the initial and final state (which it is not assured to
exist) but also in the evolution of the state during the execution.

Linear temporal logic (in short LTL) [78] is an instance of temporal logic. LTL is defined
on top of a static logic L, which can be a classic propositional or first-order logic, or either
a constraint based logic (see [42, 88, 116]). An LTL formula is interpreted over a model,
which is an infinite sequence of states σ = s1 ⋅ s2 ⋅ s3 . . . . In the following we write σi for
the sub-sequence si ⋅ si+1 . . . and σ(i) for the i-th state si.

Definition 1.5.1 (LTL formulas) Let ψ be a formula in the underlying static logic L.
An LTL formula has the following syntax:

φ ∶∶= ˙true ∣ ˙false ∣ ψ ∣ ¬̇φ ∣ φ ∧̇ φ ∣ ◯φ ∣ φ U φ.

The dot on top of the logic connectives is used in this thesis to avoid confusion with
the operators of the constraint system.

The formulas ˙true, ˙false, ¬̇φ, and φ1 ∧̇ φ2 have the classical logical meaning. The
atomic formula ψ of the logic L express a property about the current state. ◯ is the next
operator, i.e., the formula ◯φ holds at position i if and only if φ holds at the next position
i+1. The until formula φ1 U φ2 states that φ2 eventually holds and in all previous instants
φ1 holds.

In this thesis, we will use φ1 ∨̇ φ2 as a shorthand for ¬̇(¬̇φ1 ∧̇ ¬̇φ2); φ1 →̇ φ2 for
¬̇φ1 ∨̇ φ2; ◇φ for ˙true U φ and ◻φ for ¬̇◇ ¬̇φ. ◇ is called eventually operator and the
formula ◇φ holds at position i if and only if it exists j > i such that φ holds at position
j. The formula ◻φ is read always φ and states that φ holds from now on.

We write s ⊧L ψ to denote that the state s models the formula ψ in the underlying
logic L:
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Definition 1.5.2 For each φ,φ1, φ2 ∈ LTL, ψ ∈ L and σ infinite sequence of states, the
LTL satisfaction relation ⊧ is defined as:

σ ⊧ ˙true and σ /⊧ ˙false (1.5.1a)

σ ⊧ ψ iff σ(1) ⊧L ψ (1.5.1b)

s ⊧ ¬̇φ iff σ /⊧ φ (1.5.1c)

σ ⊧ φ1 ∧̇ φ2 iff σ ⊧ φ1 and σ ⊧ φ2 (1.5.1d)

σ ⊧ ◯φ iff σ1 ⊧ φ (1.5.1e)

σ ⊧ φ1 U φ2 iff ∃i ≥ 1. σi ⊧ φ2 and ∀j < i. σj ⊧ φ1 (1.5.1f)

The formula ˙true is modeled by every sequence, while ˙false by no sequence. The
formula ψ of the underlying logic L is evaluated in the first state of the sequence σ by
using the satisfaction relation ⊧L. The semantics of the conjunction (Equation (1.5.1c))
and negation (Equation (1.5.1c)) are standard. The formula ◯φ is modeled by a sequence
s1 ⋅ s2 ⋅ s3 . . . if and only if φ is modeled by the suffix s2 ⋅ s3 . . . . Finally, φ1 U φ2 holds in σ
if there exists a suffix σi of σ such that φ2 is modeled by σi, and φ1 holds in every suffix
σj with j < i.

In this thesis we will sometimes omit parenthesis. To do so, we assume that ¬̇ has
the highest priority, while ◯ has higher priority w.r.t. the remaining connectives and
temporal operators.

LTL is suitable to model properties of concurrent and reactive systems. For instance,
the formula ◇finish is a reachability property that expresses that the state finish is even-
tually reached; the formula ◻ ¬̇ error is a safety property that states that an error never
occurs. Other examples of specifications, such as fairness and mutual-exclusion properties,
can be find in [97].



2
Timed Concurrent Constraint

Programming

The concurrent constraint paradigm (ccp in short) is a simple but powerful model for
concurrent systems. It is different from other programming paradigms mainly due to the
notion of store-as-constraint that replaces the classical store-as-valuation model of von
Neumann. In this way, the languages from this paradigm can easily deal with partial
information: an underlying constraint system handles constraints on system variables.
The formal definition of this programming paradigm can be found in [109, 110, 104].

In this chapter we describe the Timed Concurrent Constraint Language (tccp in short),
introduced by [43], that adds to the original ccp model the notion of time –by defining a
discrete and global clock1– and the ability to capture the absence of information. With
these features, it is possible to specify behaviors typical of reactive systems such as time-
out or preemption. A time-out waits for a limited period of time for an event to occur,
if this event does not happen, then an exception is executed. A preemption consists in
the ability of detecting an event and, as a consequence, aborting the current process and
executing a new one.

In tccp, the computation progresses as the concurrent and asynchronous activity of
several agents that can (monotonically) add (or tell) information in a store, and query
(or ask) some information from that store. It is assumed that ask and tell actions take
one time-unit to be executed. The parallel operator is interpreted in terms of maximal
parallelism (in contrast to the interleaving approach of ccp), i.e., all the enabled agents
of A and B are executed at the same time. The time response of the constraint solver
is assumed to take a constant time, independently of the size of the store. In practice
some restrictions (mentioned below) are taken in order to ensure that these hypothesis
are reasonable (the reader can see [43] for details). In tccp, the absence of information is
captured by a new operator (with respect to ccp):

now c then A else B

which tests if, in the current time instant, the store entails the constraint c and if it
occurs, then in the same time instant it executes agent A; otherwise, it executes B (in the
same time instant). It is necessary to fix a limit for the number of nested agents of this
kind in order to ensure the bounded time response of the constraint solver. For recursive
programs, such limit is ensured by the presence of the procedure call, since we assume
that the evaluation of such a call takes one time unit.

1Differently from other languages where time is explicitly introduced by defining new timing agents.
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(Programs) P ∶∶= D . A

(Declarations) D ∶∶= p(x⃗) ∶− A -definition
∣ D,D -conjunction

(Agents) A ∶∶= skip -skip
∣ tell(c) -tell
∣ ∑ni=1 ask(ci) → A -choice
∣ now c then A else A -conditional
∣ A ∥ A -parallel
∣ ∃xA -hiding
∣ p(x1 , . . . , xm) -procedure call

Figure 2.1: tccp syntax

2.1 Syntax

The tccp language is parametric to an underlying cylindric constraint system C = ⟨C,⪯,⊗,⊕,
false, true,Var ,∃⟩ (see Definition 1.4.1) such that ⟨C,⪯,⊗,⊕, true, false⟩ is a complete lat-
tice where ⊗ is the lub operator, ⊕ is the corresponding glb operator, and true and false
are, respectively, the least and the greatest elements of C. Moreover, Var is a denumerable
set of variables with typical elements x, y, z . . . Finally, given x ∈ Var , ∃x ∶ C → C is the
cylindrification (or hiding) operator.

Given a cylindric constraint system C, the syntax of agents is given in Figure 2.1. We
assume that c and ci are finite constraints in C, p ∈ Π, x,x1, . . . , xm ∈ Var .

A tccp program P is an object of the form D . A, where A is an agent, called initial
agent, and D is a set of process declarations of the form p(x⃗) ∶− A (for some agent A),
where x⃗ denotes a generic tuple of variables.

The parallel and the hiding agents are inherited from the ccp model. The parallel
agent represents the concurrency of the model in terms of maximal parallelism, while the
hiding operator makes a variable local to some process. We can observe two additional
agents which were present in ccp, but that here have a different semantics since they
cause extension over time. The tell(c) agent adds the information c to the store, but
this information is visible to other agents only in the following time instant. This means
that the tell action takes one unit of time for its execution. The same thing occurs with
the choice agent since the ask action takes also one unit of time to evaluate its guard.
Also the procedure call consumes one time unit for its execution. Finally, the conditional
agent now c then A else B is the new agent introduced in the model in order to capture
negative information. It behaves in a single instant of time in the sense that it evaluates
the condition c and in the same instant of time it executes the corresponding agent. In
particular, if the guard is satisfied, then A will be executed, otherwise the agent B will
be executed. If we have two nested conditional agents, then the guards are recursively
checked within the same time instant. This is the reason why we need a restriction about
the maximum number of nested conditional agents.



2.2. Operational Semantics 19

2.2 Operational Semantics

In this section, we introduce the operational semantics of tccp. It is slightly different from
the original one in [43] since we have introduced conditions in specific rules (namely Rules
R2, R4 and R10) in order to detect when the store becomes false. This modification
follows the philosophy of computations defined for ccp in [110], where computations that
reach an inconsistent store are considered failure computations. In [43], this check is not
explicitly done. In our context, we are interested in detecting when a computation reaches
false; however, once false is reached, no action can modify the store (false is the greatest
element in the domain) and—after that moment—all guards in the program agents are
always entailed, thus the computation from that instant has little interest. In particular
we do not want to distinguish computations which end in false from those which loop on
store false, contrarily to what [43] does.

It is worth noting that the modification of the rules alters the observables defined in
[43] only by introducing some input-output pairs of computations that, at some point,
reach the false store. This is due to the fact that [43] does not consider non-terminating
computations and, with the new rules, a non-terminating computation that reaches the
false store of [43] may result in a terminating computation with the new rules. For all the
other cases of computations, the observables remain the same.

Definition 2.2.1 (Operational semantics of tccp) The operational semantics of tccp
is formally described by a transition system T = (Conf ,→) where we assume that each
transition step takes exactly one time-unit. Configurations in Conf are pairs ⟨A, c⟩ rep-
resenting the agent to be executed (A) and the current global store (c). The transition
relation → ⊆ Conf ×Conf is the least relation satisfying the rules R1-R10 of Figure 2.2.

As can be seen from the rules, the skip agent represents the successful termination of
the computation. The tell(c) agent adds the constraint c to the current store and then
stops. It takes one time-unit, thus the constraint c is visible to other agents from the
following time instant. The store is updated by means of the ⊗ operator of the constraint
system. The choice agent ∑ni=1 ask(ci) → Ai consults the store and non-deterministically
executes (at the following time instant) one of the agents Ai whose corresponding guard
ci is entailed by the current store; otherwise, if no guard is entailed by the store, the agent
suspends.

The conditional agent now c then A else B behaves in the current time instant like A
(respectively B) if c is (respectively is not) entailed by the store. Note that, because of
the ability of tccp to handle partial information, d ⊬ c is not equivalent to d ⊢ ¬c. Thus,
the else branch is taken not only when the condition is falsified, but also when there is not
enough information to entail the condition. This characteristic is known in the literature
as the ability to process “negative information” [106, 108]. A ∥ B models the parallel
composition of A and B in terms of maximal parallelism (in contrast to the interleaving
approach of ccp), i.e., all the enabled agents of A and B are executed at the same time.
The agent ∃xA makes variable x local to A. To this end, it uses the ∃ operator of the
constraint system. More specifically, it behaves like A with x considered local, i.e., the
information on x provided by the external environment is hided to A, and the information
on x produced by A is hided to the external world. In [43], an auxiliary construct ∃lx
is used to explicitly show the store local to A. In particular, in Rule R9, the store l in
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⟨tell(c), d⟩ → ⟨skip, c⊗ d⟩
d ≠ false (R1)

⟨∑ni=1 ask(ci) → Ai, d⟩ → ⟨Aj , d⟩
j ∈ [1, n], d ⊢ cj , d ≠ false (R2)

⟨A, d⟩ → ⟨A′, d′⟩

⟨now c then A else B, d⟩ → ⟨A′, d′⟩
d ⊢ c (R3)

⟨A, d⟩ /→

⟨now c then A else B, d⟩ → ⟨A, d⟩
d ⊢ c, d ≠ false (R4)

⟨B, d⟩ → ⟨B′, d′⟩

⟨now c then A else B, d⟩ → ⟨B′, d′⟩
d ⊬ c (R5)

⟨B, d⟩ /→

⟨now c then A else B, d⟩ → ⟨B, d⟩
d ⊬ c (R6)

⟨A, d⟩ → ⟨A′, d′⟩ ⟨B, d⟩ → ⟨B′, c′⟩

⟨A ∥ B, d⟩ → ⟨A′ ∥ B′, d′ ⊗ c′⟩
(R7)

⟨A, d⟩ → ⟨A′, d′⟩ ⟨B, d⟩ /→

⟨A ∥ B, d⟩ → ⟨A′ ∥ B, d′⟩

⟨A,d⟩ /→ ⟨B,d⟩ → ⟨B′, d′⟩

⟨A ∥ B,d⟩ → ⟨A ∥ B′, d′⟩
(R8)

⟨A, l ⊗ ∃x d⟩ → ⟨B, l′⟩

⟨∃lxA, d⟩ → ⟨∃l
′xB, d⊗ ∃x l′⟩

(R9)

⟨p(x⃗), d⟩ → ⟨A, d⟩
p(x⃗) ∶− A ∈D, d ≠ false (R10)

Figure 2.2: The transition system for tccp.
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the agent ∃lxA represents the store local to A. This auxiliary operator is linked to the
hiding construct by setting the initial local store to true, thus ∃xA ∶= ∃truexA. Finally,
the agent p(x⃗) takes from D a declaration of the form p(x⃗) ∶− A and then executes A at
the following time instant. For the sake of simplicity, we assume that sets of declarations
D are closed w.r.t. renaming of parameter names, i.e., if p(x⃗) ∶− A ∈ D then, for any
y⃗ ∈ Var , also p(y⃗) ∶− A{x⃗/y⃗} ∈D 2.

2.3 Applications

Using the basic constructs presented in Figure 2.1 is possible to define other derived
constructs, useful to model concurrent and reactive systems. For example, in [43] the
time-out construct is introduced.

i

∑
i=1

ask(ci) → Ai time-out(m) B

This construct waits at most m time-units for the satisfaction of one of the guards ci.
Before this time limit, the process behaves like the choice construct, after waiting for m
time units, if no guard is enabled, then this agent behaves as B.

Another additional primitive, presented in [43], is the watchdog :

doAwatching c

This agent is the typical preemption primitive used to interrupt the activity of a process
when some signal is presented. Namely it behaves as A as long c is not entailed by the
store; when c is entailed the process A is immediately aborted. The reader can find more
details about the semantics of those agents in [43].

It is possible to find in the literature different examples of systems that can be modelled
using the tccp language.

The process declaration in Figure 2.3, presented in [53], models a subsystem of a
microwave controller. The underlying constraint system is the Herbrand constraint system
[41]. This process declaration detects if the door is open while the microwave is turned
on. In that case, it forces that in the next time instant the microwave is turned-off and it
emits an error signal (value 1); otherwise, the agent emits a signal of no error (value 0).

Due to the monotonicity of the store, streams are used to model imperative-style vari-
ables [43]. A stream S is a structure on the form [v ∣ T ] where v is the instantiated value
of the stream and T is a free variable representing the tail of the stream. The tail T can
possibly be instantiated with a new value v′, transforming S into a new stream on the
form [v, v′ ∣ T ′] where T ′ is the new tail of S and v′ is the last instantiated value. The
value of interest of a stream S is its last instantiated value which corresponds, roughly
speaking, to the current value assigned to S.

In the example, the streams Error , Door and Button store the values that the simulated
modifiable variables get along the computation. The first three tell agents link the future
values of the streams with the future streams E, D and B. Then, when it is detected a

2This assumption is equivalent to use the diagonal elements of the constraint system: given the agent
p(x⃗) and a declaration of the form p(y⃗) ∶− A, we diagonalize the agent A before execution, i.e., we execute
∃dx1y1

⊗⋅⋅⋅⊗dxnyn x⃗A at the following time instant.
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microwave(Door , Button, Error) ∶− ∃D ∃B ∃E (

tell(Error = [ ∣ E]) ∥ tell(Door = [ ∣D]) ∥ tell(Button = [ ∣ B])

∥ now(Door = [open ∣D] ∧Button = [on ∣ B])

then (∃E1 tell(E = [1 ∣ E1]) ∥ ∃B1 tell(B = [off ∣ B1]))

else ∃E1 tell(E = [0 ∣ E1])

∥ microwave(D ,B ,E))

Figure 2.3: tccp microwave error controller

possible risk (characterized by the guard of the now agent), the microwave is turned off
and an error signal is emitted (by the then branch of the conditional agent). The final
recursive call restarts the same control at the next time instant. This check is made by
using a conditional agent. If the door is opened when the microwave is turned-on, then the
program forces that in the following time instant the microwave is turned-off and an error
signal is emitted. If it is not true that the door is opened and the microwave is working,
then the program simply emits a signal of no error in the following time instant.

Another clear example of reactive system is the one which models the railroad crossing
problem. This is a very typical problem of critical reactive system which commonly appears
in the literature (for example in [79, 43, 111]).

The system is composed by three main processes:

• train sends the message near to the controller when the train is approaching the
crossing, and it send the message out when it has passed through the crossing.

• controller sends the order down to the gate each time it receives the signal near
from a train; Similarly, when it receives the signal out , it sends the order up to the
gate.

• gate changes its state to down when it receives the order down from the controller
and to up if the order was up.

We show the tccp formalization of this system presented in [6]. Here, streams imple-
ment communication channels between processes.

The controller process (Figure 2.4) uses an input channel C through which it receives
signals from the environment (trains), and an output channel G through which it sends
orders to the gate process. It checks the input channel for a near signal (the guard in the
first now agent), in which case it sends (tells) the order down through G, links the future
values (C ′) of the stream C and restarts the check at the following time instant (recursive
call controller(C ′,G ′)). If the near signal is not detected, then, the else branch looks for
the out signal and (if present) behaves dually to the first branch. Finally, if no signal is
detected at the current time instant (last else branch), then the process keeps checking
from the following time instant (the process call takes one time instant).

The train process (Figure 2.5) notifies its state to the controller. Here ask(true)n

denotes the n-times repetition of the agent ask(true), and it corresponds to a delay of n
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controller(C ,G) ∶− ∃C ′,G′ (

now (C = [near ∣ ]) then

tell(C = [near ∣ C ′]) ∥ tell(G = [down ∣ G′]) ∥ controller(C ′,G ′)

else now (C = [out ∣ ]) then

tell(C = [out ∣ C ′]) ∥ tell(G = [up ∣ G′]) ∥ controller(C ′,G ′)

else controller(C ,G))

Figure 2.4: tccp railroad crossing system controller

train(C ,T) ∶− ∃C ′,C ′′, T ′, T ′′ (

ask(true) → train(C ,T)

+

ask(true) → ( tell(C = [near ∣ C ′]) ∥

ask(true)300 → ( tell(T = [enter ∣ T ′]) ∥

ask(true)20 → ( tell(T ′ = [leave ∣ T ′′]) ∥

tell(C ′ = [out ∣ C ′′]) ∥

train(C ′′,T ′′)))))

Figure 2.5: tccp railroad crossing system train

time units. The process uses an output channel C to communicate with the controller
and a state stream T . The process can simply recursively call itself (first branch of the
ask agent) or either non deterministically send the near signal through C and after 300
time instants change its internal state T to enter. Then, after 20 time instants, it changes
its state T to leave, it sends to the controller the out signal through the channel C and
recursively calls itself.

The gate process (Figure 2.6) reacts to the signals from the controller. Orders are
received through the input channel G and the state of the gate (represented by the stream
S) is consequently updated. The ask agent (with two branches) makes the gate wait
(suspend) until one of the guards is entailed, i.e., until one of the two orders is received.
Once a signal is detected, after 100 time instants, the state of the gate is appropriately
updated and a recursive call is done in order to keep the gate active (i.e., waiting for the
successive order). Note that an instance of the gate process is run each time a signal is
received, differently from the controller process which is run at each time instant.

Finally, the process init (Figure 2.7) models the whole railroad crossing system by
composing in parallel controller, train and gate.
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gate(G ,S) ∶− ∃G′, S′ (

ask(G = [down ∣ ]) →

( tell(G = [down ∣ G′]) ∥

ask(true)100 → (tell(S = [down ∣ S′]) ∥ gate(G ′,S ′)))

+

ask(G = [up ∣ ]) →

( tell(G = [up ∣ G′]) ∥

ask(true)100 → (tell(S = [up ∣ S′]) ∥ gate(G ′,S ′))))

Figure 2.6: tccp railroad crossing system gate

init ∶− ∃C,T,S,G ( train(C ,T) ∥ controller(C ,S) ∥ gate(S ,G))

Figure 2.7: tccp railroad crossing system initialization
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Small-step and Big-step Semantics

Abstract

In this chapter, we present a new compositional bottom-up semantics for tccp which
is defined for the full language. In particular, is able to deal with the non-monotonic
characteristic of the language, which constitutes a substantial additional technical
difficulty w.r.t. other compositional denotational semantics present in literature (which
do not tackle the full language).

The semantics is proven to be (correct and) fully abstract w.r.t. the full behavior
of tccp, including infinite computations. This is particularly important since tccp has
been defined to model reactive systems.

The overall of these features makes our proposal particularly suitable as the ba-
sis for the definition of semantic-based program manipulation tools (like analyzers,
debuggers or verifiers), especially in the context of reactive systems.

Furthermore, we provide a big-step semantics (by abstraction of our small-step
semantics) which tackles also outputs of infinite computations.

In the literature, much effort has been devoted to the development of appropriate deno-
tational semantics for languages in the ccp paradigm (e.g. [47, 41, 49]). Compositionality
and full abstraction are two highly desirable properties for a semantics, since they are
needed for many purposes. A fully abstract model can be considered the semantics of a
language [47].

In [41], the difficulties for handling nondeterminism and infinite behavior in the ccp
paradigm were investigated. The authors showed that the presence of nondeterminism,
local variables and synchronization require relatively complex structures for the denota-
tional model of (non timed) ccp languages. In most ccp languages, nondeterminism is
defined in terms of a global choice, which poses even more difficulties than a local-choice
model [49].

Successively, [87] showed that for timed concurrent constraint languages, the presence
of timing constructs which handle negative information in addition to non-determinism and
local variables significantly complicates the definition of compositional and fully abstract
semantics. Moreover, infinite behaviors (which become natural in the timed extensions)
are an additional problem [41].

Presumably because of all these difficulties, for the languages of the ccp family which
handle jointly the above mentioned features, the proposals of compositional semantics in
the literature have been given by introducing (quite) severe restrictions on the languages.
Essentially, they all limit the use of negative information and non-determinism, that are
the distinguishing features that enhance the expressiveness of the paradigm w.r.t. other
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traditional ones. For us, this is contradictory and certainly unsatisfactory. Thus, we
strived to develop a semantics which is fully abstract for the full tccp language. This
is particularly important when one is interested in applying the semantics to develop
(semantics-based) fully automatic program manipulation tools (like debuggers, verifiers
and analyzers).

With this application in mind, we have developed a new (small-step) compositional,
bottom-up, goal-independent and condensed semantics which is (correct and) fully abstract
w.r.t. the small-step behavior of full tccp. To obtain this semantics the idea is to enrich
the classical behavioral timed traces with information about the essential conditions that
the store must (or must not) satisfy in order to make the program proceed with one or
another execution branch. Thus, we associate conditions to the store of each computation
step and then we collect just the most general hypothetical computations. Since conditions
are constructed by using only the information in the guards of a program, we obtain a
condensed semantics which also deals with non-monotonicity, because into denotations
we have the minimal information needed to exploit computations arising from absence of
information.

Since tccp was originally defined to model reactive systems, which many times in-
clude systems that do not terminate with a purpose, we have developed our semantics
to distinguish among terminating, suspending and non-terminating computations. This
improves the original semantics for tccp defined in [43] which identifies suspending and
non-terminating computations. In particular, terminating computations are those that
reach a point in which no agents are pending to be executed. Suspending computations
are those that reach a point in which there are some agents pending to be executed, but
there is not enough information in the store to entail the conditions that would make
them evolve. We think it is essential to distinguish these two kinds of computations since,
conceptually, a suspended computation has not completely finished its execution, and, in
some cases, it could be a symptom of a system error.

To complete our proposal, we also define a big-step semantics (by abstraction of our
small-step semantics) which tackles also outputs of infinite computations. We prove that
its fragment for finite computations is (essentially) isomorphic to the traditional big-step
semantics of [43]. Moreover, we also formally prove that it is not possible to have a
correct input-output semantics which is defined solely on the information provided by the
input/output pairs.

3.1 Small-step Semantics

In order to introduce the small-step semantics, we need first to define some (technical)
notions. In the sequel, all definitions are parametric w.r.t. a cylindric constraint system
C = ⟨C,⪯,⊗,⊕, false, true,Var ,∃⟩. In the illustrative examples we will use, for the sake
of simplicity, the Constraint System 1.4.3 of linear disequalities. We denote by AΠ

C the
set of agents and DΠ

C the set of sets of process declarations built on signature Π and
constraint system C. By ε we denote the empty sequence; by s1 ⋅ s2 the concatenation of
two sequences s1, s2. We also abuse notation and, given a set of sequences S, by s1 ⋅S we
denote {s1 ⋅ s2 ∣ s2 ∈ S}.

Let us formalize first the notion of behavior of a set D of process declarations in terms
of the transition system described in Figure 2.2. It collects all the small-step computations
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associated to D as the set of (all the prefixes of) the sequences of computation steps (in
terms of sequences of stores), for all possible initial agents and stores.

Definition 3.1.1 Let D ∈ DΠ
C. Then the small-step (observable) behavior of D is defined

as:

BssJDK ∶= ⋃
∀c∈C,∀A∈AΠ

C

BssJD . AKc where

BssJD . AKc0 ∶= {c0 ⋅ c1 ⋅ . . . ⋅ cn ∣ ⟨A, c0⟩ → ⟨A1, c1⟩ → . . .→ ⟨An, cn⟩} ∪ {ε}

(where → is the transition relation given in Figure 2.2).
We call the sequences in BssJD . AKc behavioral timed traces or simply traces (when

clear from the context).
We denote by ≈ss the equivalence relation between process declarations induced by Bss ,

namely for all D1 ,D2 ∈ DΠ
C, D1 ≈ss D2 ⇐⇒ BssJD1 K = BssJD2 K.

With this definition, we can formally state the requirement of full abstraction for semantics
S as SJD1 K = SJD2 K ⇐⇒ D1 ≈ss D2 .

To achieve a goal-independent semantics, a typical solution is to define denotations by
using only the most general traces (in our case those for the weakest store) plus define
a suitable semantic operator which can reconstruct the semantics of any expression (in
our case agent) from such most general denotations. This result can be achieved in this
way only if the set of all traces for each expression is itself condensing (borrowing the
terminology from program analysis [74, 80]), which in our case means that the set of all
traces for an agent A with initial store c can be reconstructed from the set of all traces
of A with initial store true. The problem in following this approach in the tccp case is
that Bss is not condensing, since not all behavioral timed traces can be retrieved from
the most general ones. This is due to the ask, now and hiding constructs. For instance,
consider the agent A ∶= now x = 3 then tell(z = 0) else tell(z = 1). Given the initial store
true, we obtain the trace true ⋅ z = 1, while for the stronger initial store x = 3 we obtain
the trace x = 3 ⋅ (x = 3 ∧ z = 0), which is not comparable to the former (since z = 0⇏ z = 1
and z = 1 ⇏ z = 0). Hence, the latter trace cannot be obtained from the former trace,
which has been generated for the most general store. Indeed—in general—in tccp, given
S ∶= BssJD . AKc (the set of traces for an agent A with initial store c), if we compute
BssJD . AKd with a stronger initial store d (d ⊢ c), then some traces of S may disappear
and, what is more critical, new traces, which are not instances of the ones in S, can
appear. In the community of the ccp paradigm [41, 108], this characteristic is known as
“non-monotonicity of the language”.

Because of tccp’s non-monotonicity, Bss is also not compositional. For instance, con-
sider the agents A1 ∶= tell(x = 1) and

A2 ∶= ask(true) → now (x = 1) then tell(y = 0) else tell(y = 1)

For each c, BssJ∅ . A1Kc = {c ⋅ (x = 1 ∧ c)}. Moreover, for each c that implies1 x = 1,
BssJ∅ . A2Kc = {c ⋅ c ⋅ (y = 0 ∧ c)} while, when c⇏ (x = 1), BssJ∅ . A2Kc = {c ⋅ c ⋅ (y = 1 ∧ c)}.
Now, for the parallel composition of these agents A1 ∥ A2, BssJ∅.A1 ∥ A2Ktrue = {true ⋅(x =
1) ⋅ (x = 1 ∧ y = 0)} which cannot be computed by merging the traces of A1 and A2.

1We recall that in the exemplification cylindric constraint system, the entailment is logical implication.
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Thus, it does not come as a surprise that for the majority of non-monotonic languages
of the ccp paradigm, the compositional semantics that have been written [41, 42, 49, 88, 51,
90, 50] are not defined for the full language, either because they avoid the constructs that
cause non-monotonicity or because they restrict their use. Hence, the ability to handle
non-monotonicity (and thus the full language without any limitation) in a condensed way
is certainly one of the strengths of this thesis.

The example above shows why, due to the non-monotonicity of tccp, in order to obtain
a compositional (and goal-independent) semantics for the full language it is not possible
to follow the traditional strategy and collect in the semantics the traces associated to the
weakest initial store. Actually, we have found the solution to the problem of composition-
ality by trying to solve another (related) problem. Since in a top-down (goal-dependent)
approach the (initial) current store is propagated, then the decisions regarding a condi-
tional or choice agent (where the computation evolves depending on the entailment of the
guards in the current store) can be taken immediately. However, if we want to define a fix-
point semantics which builds the denotations bottom-up we have the problem that, while
we are building the fixpoint, we do not know the current store yet. Thus, it is impossible
to know which execution branch has to be taken in correspondence of a program’s guard.

To solve both problems our proposal is to enrich behavioral timed traces with infor-
mation about the essential conditions that the store must (or must not) satisfy in order to
make the program proceed with one or another execution branch. Thus, we associate con-
ditions to the store of each computation step and then we collect (only) the most general
hypothetical computations. These conditions are constructed by using the information in
the guards of the ask and now constructs of a program.

We will formally show that this indeed solves both the problem of constructing bottom-
up the semantics and of having a compositional and condensed semantics coping with
non-monotonicity.

3.1.1 The semantic domain

Let us start by introducing the notion of condition, that is the base to build our deno-
tations. Intuitively, we need “positive conditions” for branches related to the entailment
of guards and “negative conditions” for non-entailment, i.e., for the branches where the
current store does not entail the associated condition.

Definition 3.1.2 (Conditions) A condition η, over Cylindric Constraint System C, is
a pair η = (η+, η−) where

• η+ ∈ C is called positive condition, and
• η− ∈ ℘(C) is called negative condition.

A condition is valid when η+ ≠ false, true ∉ η− and ∀c ∈ η−. η+ ⊬ c. We denote ΛC the set
of all conditions and ∆C the subset of valid ones.

The conjunction of two conditions η1 = (η+1 , η
−
1 ) and η2 = (η+2 , η

−
2 ) is defined (by abuse

of notation) as η1⊗η2 ∶= (η+1 ⊗η
+
2 , η

−
1 ∪η

−
2 ). Two conditions are called incompatible if their

conjunction is not valid.
A store c ∈ C is consistent with η, written c ≫ η, if η+ ⊗ c ≠ false and ∀h ∈ η−. c ⊬ h.

Moreover, we say that c satisfies η, written c⊫ η, when c ⊢ η+ and ∀h ∈ η−. c ⊬ h.
We extend the ∃x operator to conditions as ∃x(η

+, η−) ∶= (∃x η
+,∃x η

−).



3.1. Small-step Semantics 29

Due to the partial nature of the constraint system, for negative conditions we cannot use
the glb (disjunction) ⊕n

i=1 ci instead of set {c1, . . . , cn} since we can have a store c such that
c ⊢ ⊕n

i=1 ci while ∀i. c ⊬ ci. For instance, we can have two guards x > 2 and x ≤ 2 and it
may happen that the current store does not satisfy any of them, but their glb x > 2⊕x ≤ 2
(which is true) is entailed by any store.

Clearly, if a store—different from false—satisfies a condition, then it is also consistent
with that condition. If two conditions are incompatible, then there exists no constraint
c ∈ C ∖ {false} that entails simultaneously both conditions.

Now we are ready to enrich with conditions the notion of trace.

Definition 3.1.3 (Conditional state) A conditional state, over Cylindric Constraint
System C, is one of the following constructs.

Conditional store. A pair η ↣ c, for each η ∈ ΛC and c ∈ C.

Stuttering. The construct stutt(C), for each finite C ⊆ C ∖ {true}.

End-of-process. The construct ⊠.

In a conditional store t = η ↣ c, the constraint c is the store of t. We say that η ↣ c
is valid if η is valid. We extend ∃x to conditional states as ∃x ((η

+, η−) ↣ c) ∶= ∃x(η
+,

η−) ↣ ∃x c, ∃x stutt(C) ∶= stutt(∃xC) and ∃x ⊠ ∶= ⊠.

The conditional store η ↣ c is used to represent a hypothetical computation step where
η is the condition that the current store must satisfy in order to make the computation
proceed. Moreover, c represents the information that is added to the global store in the
next time instant in case η is satisfied.

The stuttering stutt(C) is needed to model the suspension of the computation due to
an ask construct, i.e., it represents the fact that there is no guard in C (the guards of a
choice agent) entailed by the current store.

Definition 3.1.4 (Conditional trace) A conditional trace (over Cylindric Constraint
System C) is a (possibly infinite) sequence t1⋯tn⋯ of valid conditional states (over C)—
where ⊠ can be used only as a terminator—that respects the following properties:

Monotonicity. For each ti = ηi ↣ ci and tj = ηj ↣ cj such that j ≥ i, cj ⊢ ci.
Consistency. For each ti = ηi ↣ ci and ti+1 either of the form (η+i+1, η

−
i+1) ↣ ci+1 or

stutt(η−i+1), we have that ∀c− ∈ η−i+1. ci ⊬ c
−.

We denote by CTC the set of all conditional traces, or simply write CT when clear from
the context.

The sequence of stores of a given conditional trace s is the sequence of stores cj of all
conditional states tj = ηj ↣ cj of s. The limit store of a (finite or infinite) trace s is the
lub of the stores (of the conditional states) of s.

A finite conditional trace that is ended with ⊠ as well as an infinite conditional trace
is said failed or (finitely) successful depending on whether its limit store c is false or not
respectively. Such c is called computed result.

A sequence (of conditional states) that does not satisfy these properties is called an
invalid trace.
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Each conditional trace models a hypothetical tccp computation: for each time instant,
we have a conditional state where each condition represents the information that the global
store has to satisfy in order to proceed to the next time instant.

The Monotonicity property is needed since in tccp, as well as in ccp but not in all its
extensions, each store in a computation entails the previous ones. Note that because of
this, for any finite conditional trace t1, . . . , tn whose sequence of stores (of the conditional
stores) is c1, . . . , cm (m ≤ n), the limit store ⊗mi=1ci is just the last store cm.

The Consistency property affirms that the store of a given conditional state cannot be
in contradiction with the condition associated to the successive conditional state.

Example 3.1.5

It is easy to verify that the sequence r1 ∶= (true,∅) ↣ y = 0 ⋅ (x > 2,∅) ↣ y = 0 ∧ z = 3 ⋅ ⊠ is
a conditional trace. The first component of the trace states that in the first time instant
the store y = 0 is computed in any case (the condition (true,∅) is always satisfied). The
second component requires the constraint x > 2 to be satisfied by the (global) store in
order to proceed by adding to the next state the information z = 3. Instead, the sequence
r2 ∶= (true,∅) ↣ x = 0⋅(x = 0,∅) ↣ true ⋅⊠ is not a conditional trace since the Monotonicity
property does not hold because true ⊬ x = 0. Also r3 ∶= (true,∅) ↣ x = 0 ⋅ stutt({x ≥ 0}) ⋅⊠
is not a conditional trace: it does not satisfy the Consistency property since x = 0 implies
the (only) negative condition in the successive conditional state (x ≥ 0).

Note that finite conditional traces not ending in ⊠ are partial traces that can still
evolve and thus they are always a prefix of a longer conditional trace.

Definition 3.1.6 (Semantic domain) A set R ⊆ CT is closed by prefix if for each
r ∈ R, all the prefixes p of r (denoted as p ≤pref r) are also in R.

We denote the domain of non-empty sets of conditional traces that are closed by prefix
as P (i.e., P ∶= {R ⊆ CT ∣R ≠ ∅, r ∈ R⇒ ∀p ≤pref r. p ∈ R}).

We order elements in P by set inclusion ⊆.

It is worth noting that (P, ⊆, ⋃, ⋂, CT, {ε}) is a complete lattice.

This conceptual representation is pretty simple, especially to understand the lattice
structure, considered the fact that we admit infinite traces. However, each prefix-closed set
contains a lot of redundant traces, which are quite inconvenient for technical definitions.
Thus, we will use an equivalent representation obtained by considering the crown of prefix-
closed sets. Namely, given P ∈ P, we remove all the prefixes of a trace in the set with
the function maximal(P ) ∶= {r ∈ P ∣ ∄p ∈ P ∖ {r}. r ≤pref p}. Let M ∶= maximal(CT),
M ∶= {maximal(P ) ∣P ∈ P} and call maximal conditional trace sets the elements of M.
The inverse of map maximal is, for each M ∈ M,

prefix(M) ∶= {p ∈ CT ∣p ≤pref r, r ∈M} (3.1.1)

The order of M is induced from the one in P as M1 ⊑M2 ⇐⇒ prefix(M1) ⊆ prefix(M2)

which is equivalent to say that M1 ⊑ M2 ⇐⇒ ∀r1 ∈ M1 ∃r2 ∈ M2. r1 ≤pref r2. We
define the lub ⊔ and the glb ⊓ of M analogously. It is straightforward to prove that

(P, ⊆) −−−−−−−−−−→Ð→←←Ð−−−−−−−−−−
maximal

prefix
(M, ⊑) is an order-preserving isomorphism, so (M, ⊑, ⊔, ⊓, M, {ε})

is also a complete lattice.
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Although this second representation is very convenient for technical definitions, it is
not very suited for examples. For instance, different maximal traces have frequently (sig-
nificant) common prefixes; hence, some parts have to be written many times and, more
important, it can be difficult to visualize the repetition (obfuscating the comprehension).
Thus, in our examples we will use another equivalent representation in terms of prefix
trees. Namely, we will use trees with (non root) nodes labeled with conditional states.
Given P ∈ P, tree(P ) builds the prefix tree of P , obtained by combining all the se-
quences that have a prefix in common in the same path. Let T ∶= {tree(P ) ∣P ∈ P}.
The inverse of tree is the function path ∶T → P which returns the set of all possible
paths starting from the root. Let ⊴ be the order on T induced by the order on P, i.e.,
T1 ⊴ T2 ⇐⇒ path(T1) ⊆ path(T2). We define the lub and glb of T in a similar way. It is

straightforward to prove that (P, ⊆) −−−−−−→Ð→←←Ð−−−−−−
tree

path
(T, ⊴) is an order-preserving isomorphism,

so also (T, ⊴) is a complete lattice. Finally, by function composition we can define a third

order-preserving isomorphism (M, ⊑) −−−−−−−−−−−−−−−→Ð→←←Ð−−−−−−−−−−−−−−−
prefix ○ tree

path ○maximal
(T, ⊴) between trees and maximal

conditional traces. In the sequel we will use the representation which is most convenient
in each case.

3.1.2 Fixpoint denotations of programs

The technical core of our semantics definition is the agent semantics evaluation function
(Definition 3.1.16, page 34) which, given an agent A and an interpretation I (for the
process symbols of A), builds the maximal conditional traces associated to A. To define
it, we need first to introduce some auxiliary semantic functions.

Definition 3.1.7 (Propagation Operator) Let r ∈ M and c ∈ C. We define the prop-
agation of c in r, written r↓c, by structural induction as ⊠↓c = ⊠, ε↓c = ε and

((η+, η−) ↣ d ⋅ r′)↓c =

⎧⎪⎪
⎨
⎪⎪⎩

(η+ ⊗ c, η−) ↣ d⊗ c ⋅ (r′↓c) if c≫ (η+, η−), d⊗ c ≠ false

(η+ ⊗ c, η−) ↣ false ⋅ ⊠ if c≫ (η+, η−), d⊗ c = false

(stutt(η−) ⋅ r′)↓c = stutt(η−) ⋅ (r′↓c) if ∀c− ∈ η−. c ⊬ c−

We abuse notation and denote by R↓c the point-wise extension of ↓c to sets of conditional
traces: R↓c ∶= {r↓c ∣ r ∈ R and r↓c is defined}.

This operator is used in the definition of the semantics of constructs that add new
information to traces. By definition, the propagation operator ↓ is a partial function
M × C → M that instantiates a conditional trace with a given constraint and checks
the consistency of the new information with the conditional states in the trace. This
information needs to be propagated also to the successive (i.e., future) conditional states
in order to maintain the monotonicity of the store.

Example 3.1.8

Given the conditional trace r ∶= (true,∅) ↣ x > 10 ⋅ (true,∅) ↣ x > 20 ⋅ ⊠, the propagation
of y > 2 in r (r↓y>2) is (y > 2,∅) ↣ x > 10 ∧ y > 2 ⋅ (y > 2,∅) ↣ x > 20 ∧ y > 2 ⋅ ⊠.

For r′ ∶= (true,{y > 0}) ↣ true ⋅ ⊠ the propagation r′↓y>2 is not defined since y > 2 É

(true,{y > 0}).
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Finally, given the conditional trace r′′ ∶= (true,∅) ↣ y < 0 ⋅ ⊠, the propagation r′′↓y>2

produces the conditional trace (y > 2,∅) ↣ false ⋅⊠ since y > 2 ≫ (true,∅) and y < 0∧y > 2 =
false.

Note that the consecutive propagation of two constraints (r↓c)↓c′ is equivalent to
r↓(c⊗c′) (as stated formally in Lemma 3.A.2).

Definition 3.1.9 (c-compatible) r ∈ M is said to be compatible w.r.t. c ∈ C (c-compatible
in short) if, for each (η+, η−) ↣ d in r, c ≫ (η+, η−), and for each stutt(η−) in r, c ⊬ c−

for all c− ∈ η−.

When r is not c-compatible w.r.t. c, the store c is in contradiction with a condition of
some conditional state of r and then r↓c is not defined.

The following parallel composition auxiliary operator is used in the definition of the
semantics of the parallel construct. Intuitively, this operator combines (with maximal par-
allelism) the information coming from two conditional traces and it checks the satisfiability
of the conditions and the consistency of the resulting stores.

Definition 3.1.10 (Parallel composition) The parallel composition partial operator
∥̄∶M × M → M is the commutative closure of the following partial operation defined by
structural induction as: r ∥̄ ε ∶= r, r ∥̄ ⊠ ∶= r and

(stutt(η−1 ) ⋅ r
′
1) ∥̄ (stutt(η−2 ) ⋅ r

′
2) ∶= stutt(η−1 ∪ η

−
2 ) ⋅ (r

′
1 ∥̄ r

′
2)

Moreover, if η1 ⊗ η2 is valid, r′1 is c2-compatible and r′2 is c1-compatible, then

(η1 ↣ c1 ⋅ r
′
1) ∥̄ (η2 ↣ c2 ⋅ r

′
2) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

η1 ⊗ η2 ↣ c1 ⊗ c2 ⋅ ((r
′
1↓c2) ∥̄ (r′2↓c1)) if c1 ⊗ c2 ≠ false

η1 ⊗ η2 ↣ false ⋅ ⊠ if c1 ⊗ c2 = false,

Finally, if ∀c− ∈ η−2 . η
+
1 ⊬ c

− and r′2 is c1-compatible, then

((η+1 , η
−
1 ) ↣ c1 ⋅ r

′
1) ∥̄ (stutt(η−2 ) ⋅ r

′
2) ∶= (η+1 , η

−
1 ∪ η

−
2 ) ↣ c1 ⋅ (r

′
1 ∥̄ (r′2↓c1))

Clearly, by definition, ∥̄ is commutative. Moreover, because of ⊗ associativity, ∥̄ is also as-
sociative. It is worth noting that, if one of the traces is not compatible with the propagated
constraint, then the parallel composition is not defined.

Example 3.1.11
Consider r1 ∶= (true,∅) ↣ y > 2 ⋅ (y > 2,∅) ↣ y > 2 ⋅ ⊠ and r2 ∶= (z = 1,∅) ↣ z = 1 ⋅ ⊠.
Since r1 and r2 do not share variables, the compatibility checks always succeed and then
r1 ∥̄ r2 = (z = 1,∅) ↣ y > 2 ∧ z = 1 ⋅ (y > 2 ∧ z = 1,∅) ↣ y > 2 ∧ z = 1 ⋅ ⊠.

Consider now r3 ∶= stutt({y > 0}) ⋅ (y > 0,∅) ↣ y > 0 ∧ z = 3 ⋅ ⊠. Traces r1 and r3 share
the variable y and it can be seen that the information regarding y in the two traces is
consistent, thus r1 ∥̄ r3 = (true,{y > 0}) ↣ y > 2 ⋅ (y > 2,∅) ↣ y > 2 ∧ z = 3 ⋅ ⊠.

Finally, consider r4 ∶= (true,∅) ↣ true ⋅ (true,{y > 0}) ↣ true ⋅ ⊠. This trace, in the
second time instant, requires that the constraint y > 0 cannot be entailed by the current
store. However, the trace r1 states, at the same time instant, that y > 2. This is the reason
because r1 ∥̄ r4 is not defined.
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Note that ↓ distributes over ∥̄, in the sense that (r1 ∥̄ r2)↓c = (r1↓c) ∥̄ (r2↓c) (as stated
formally in Lemma 3.A.3).

The last auxiliary operator that we need is the hiding operator ∃̄∶Var ×M→M which,
intuitively, hides the information regarding a given variable in a conditional trace.

Definition 3.1.12 (Hiding operator) Given r ∈ M and x ∈ V, we define the hiding of
x in r, written ∃̄x r, by structural induction as ∃̄x ε ∶= ε, ∃̄x ⊠ ∶= ⊠,

∃̄x ((η
+, η−) ↣ c ⋅ r′) ∶= ∃x ((η

+, η−) ↣ c) ⋅ ∃̄x r
′

∃̄x ( stutt(η−) ⋅ r′) ∶= ∃x stutt(η−) ⋅ ∃̄x r
′

We distinguish two special classes of conditional traces.

Definition 3.1.13 (Self-sufficient and x-self-sufficient conditional trace) A max-
imal trace r ∈ M is said to be self-sufficient if the first condition is (true,∅) and, for each
ti = ηi ↣ ci and ti+1 = ηi+1 ↣ ci+1, ci ⊫ ηi+1 (each store satisfies the successive condition).

Moreover, r is self-sufficient w.r.t. x ∈ V (x-self-sufficient) if ∃̄Var∖{x} r is self-sufficient.

Definition 3.1.13 is stronger than Definition 3.1.4 since the latter does not require sat-
isfiability but just consistency of the store w.r.t. conditions. Informally, this new definition
demands that for self-sufficient conditional traces, no additional information (from other
agents) is needed in order to complete the computation. In an x-self-sufficient conditional
trace the same happens but only considering information about variable x.

Example 3.1.14
The conditional trace r1 of Example 3.1.5 is not self-sufficient since y = 0⊯ x > 2.

Now consider a variation where we add the information x = 4 to the stores, namely
r2 ∶= (true,∅) ↣ y = 0 ∧ x = 4 ⋅ (x > 2,∅) ↣ y = 0 ∧ z = 3 ∧ x = 4 ⋅ ⊠. It is easy to see that r2

is a self-sufficient conditional trace, essentially because we add enough information in the
first store to satisfy the second condition, i.e., y = 0 ∧ x = 4⊫ (x > 2,∅).

Moreover, r2 is also x-self-sufficient since ∃̄Var∖{x} r2 = (true,∅) ↣ x = 4 ⋅ (x > 2,
∅) ↣ x = 4 ⋅ ⊠, which is a self-sufficient trace.

Interpretations

Now we introduce the notion of interpretation, which is used to give meaning to process
calls by associating to each process symbol a set of (maximal) conditional traces “modulo
variance”.

Definition 3.1.15 (Interpretations) Let PCΠ ∶= {p(x⃗) ∣ p ∈ Π, x⃗ are distinct variables}
(or simply PC when clear from the context).

Two functions I, J ∶PC →M are variants, denoted by I ≅ J , if for each π ∈ PC there
exists a variable renaming ρ such that (I(π))ρ = J(πρ).

An interpretation is a function I ∶PC →M modulo variance2.
The semantic domain IΠ (or simply I when clear from the context) is the set of all

interpretations ordered by the pointwise extension of ⊑ (which by an abuse of notation we
also denote by ⊑).

2i.e., a family of elements of M indexed by PC modulo variance.
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The partial order on I formalizes the evolution of the computation process. (I, ⊑) is a
complete lattice and its least upper bound and greatest lower bound are the pointwise
extension of ⊔ and ⊓, respectively. In the sequel we abuse the notations of M for I as
well. The bottom element is �I ∶= λπ. {ε}.

Essentially, we define the semantics of each predicate in Π over formal parameters
whose names are actually irrelevant. It is important to note that PCΠ (modulo variance)
has the same cardinality of Π (and is thus finite) and therefore each interpretation is a
finite collection of (possibly infinite) elements. Hence, in the sequel, we explicitly write
interpretations by cases, like

I ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

π1 ↦ T1
⋮
πn ↦ Tn

representing
I(π1) ∶= T1

⋮

I(πn) ∶= Tn

In the following, any I ∈ I is implicitly considered as an arbitrary function PC →M
obtained by choosing an arbitrary representative of the elements of I generated by ≅.
Actually, all the operators that we use on IΠ are also independent of the choice of the
representative. Therefore, we can define any operator on I in terms of its counterpart
defined on functions PC →M.

Moreover, we also implicitly assume that the application of an interpretation I to
a process call π, denoted by I(π), is the application I(π) of any representative I of I
which is defined exactly on π. For example, if I = (λp(x, y).{(true,∅) ↣ x = y})/

≅
then

I(p(u, v)) = {(true,∅) ↣ u = v}.

Semantics Evaluation Function of Agents

We are finally ready to define the evaluation function of an agent A w.r.t. an interpretation
I , which computes the set of (maximal) conditional traces associated to the agent A. It
is important to note that the computation does not depend on an initial store. Instead,
the weakest (most general) condition for each agent is (computed and) accumulated in the
conditional traces.

Definition 3.1.16 (Semantics Evaluation Function for Agents) Given A ∈ AΠ
C and

I ∈ IΠ, we define the semantics evaluation AJAKI ∈ M by structural induction as follows.

AJskipKI ∶= {⊠} (3.1.2)

AJtell(c)KI ∶= {(true,∅) ↣ c ⋅ ⊠} (3.1.3)

AJA ∥ BKI ∶= ⊔{rA ∥̄ rB ∣ rA ∈ AJAKI , rB ∈ AJBKI} (3.1.4)

AJ∃xAKI ∶= ⊔{ ∃̄x r ∣ r ∈ AJAKI , r is x-self-sufficient} (3.1.5)

AJp(x⃗)KI ∶= (true,∅) ↣ true ⋅ I(p(x⃗))3 (3.1.6)

AJ
n

∑
i=1

ask(ci) → AiKI ∶= lfpM λR. (stutt({c1, . . . , cn}) ⋅R ⊔

⊔{(ci,∅) ↣ ci ⋅ (r↓ci) ∣1 ≤ i ≤ n, r ∈ AJAiKI , r ci-compatible}) (3.1.7)

3Recall that by s1 ⋅ S we denote {s1 ⋅ s2 ∣ s2 ∈ S}.



3.1. Small-step Semantics 35

AJnow c then A else BKI ∶=
{(c,∅) ↣ c ⋅ ⊠ ∣ ⊠ ∈ AJAKI} ⊔ (3.1.8a)

⊔{(η+ ⊗ c, η−) ↣ d⊗ c ⋅ (r↓c) ∣ (η+, η−) ↣ d ⋅ r ∈ AJAKI ,
d⊗ c ≠ false, ∀c− ∈ η−. η+ ⊗ c ⊬ c−, r c-compatible} ⊔ (3.1.8b)

⊔{(η+ ⊗ c, η−) ↣ false ⋅ ⊠ ∣ (η+, η−) ↣ d ⋅ r ∈ AJAKI ,
d⊗ c = false, ∀c− ∈ η−. η+ ⊗ c ⊬ c−, r c-compatible } ⊔ (3.1.8c)

⊔{(c, η−) ↣ c ⋅ (r↓c) ∣ stutt(η−) ⋅ r ∈ AJAKI , ∀c− ∈ η−. c ⊬ c−, r c-compatible} ⊔
(3.1.8d)

⊔{(true,{c}) ↣ true ⋅ ⊠ ∣ ⊠ ∈ AJBKI} ⊔ (3.1.8e)

⊔{(η+, η− ∪ {c}) ↣ d ⋅ r ∣ (η+, η−) ↣ d ⋅ r ∈ AJBKI , η+ ⊬ c} ⊔ (3.1.8f)

⊔{(true, η− ∪ {c}) ↣ true ⋅ r ∣ stutt(η−) ⋅ r ∈ AJBKI} (3.1.8g)

By lfp(F ) we denote the least fixed point of any monotonic function F ∶ L → L, over some
lattice L.

We now explain in detail each case of the definition.

(3.1.2) The semantics of the skip agent contains just the trace composed of the end-of-
process construct that marks the end of the computation.

(3.1.3) For the tell(c) agent we have a trace with two conditional states, the first one with
condition (true,∅) since c must be added to the store in any case (in the next time
instant). Next, the computation terminates with the end-of-process symbol ⊠.

(3.1.4) The semantics for the parallel composition of two agents is defined in terms of the
auxiliary operator ∥̄, explained in Definition 3.1.10.

(3.1.5) The hiding construct must hide the information about x from all traces that cannot
be altered by the presence of external information about x, thus the hiding operation
is applied just to x-self-sufficient conditional traces (Definition 3.1.13), that are those
for which no additional information about variable x is needed (from other agents)
in order to complete the computation.

(3.1.6) The semantics of process call p(x⃗) simply delays by one time instant the traces
for p(x⃗) in interpretation I by prefixing them with (true,∅) ↣ true.

(3.1.7) The semantics for the non-deterministic choice collects, for each guard ci, a con-
ditional trace of the form (ci,∅) ↣ ci ⋅ (r↓ci). This trace requires that ci has to be
satisfied by the current store (positive part of the condition in the first state). Then,
the constraint ci is propagated to the trace r (the continuation of the computation,
which belongs to the semantics of Ai). Note that the requirement of ci-compatibility
ensures that r↓ci is defined.

Furthermore, we collect the stuttering traces, which correspond to the case when
the computation suspends. These traces are of the form stutt({c1, . . . , cn}) ⋅ r where
r is, recursively, an element of the semantics of the choice agent.
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(3.1.8) The definition for the conditional agent now c then A else B is similar to the
previous case. However, since the now construct must be instantaneous, in order
to correctly model the timing of the agent we have seven cases depending on the
possible forms of the first conditional state of the semantics of A (respectively B),
on the value of the resulting store (false or not) and on the fact that the guard c is
satisfied or not in the current time instant.

(3.1.8a)–(3.1.8d) represent the case in which the guard c is satisfied by the current
store. In this case, the agent now must behave instantaneously as A. For this reason,
we distinguish four different cases corresponding to the possible form of conditional
traces associated to A. In particular, (3.1.8a) corresponds to the case when the
computation of A ends, thus also the computation of the conditional agent must
end. In (3.1.8b), the information added (in one step) by A is compatible with the
condition and with the rest of the computation and, moreover, does not produce false
when merged—by using ⊗—with the current store d. (3.1.8c) stops the conditional
trace since the information produced by A added to the current store produces the
inconsistent store false. Finally, (3.1.8d) corresponds to the case when A suspends.

(3.1.8e)–(3.1.8g) model the cases when c is not entailed by the current store. In
this situation, the agent now must behave instantaneously as B, and the definition
follows the same reasoning as for (3.1.8a), (3.1.8b) and (3.1.8d). The main difference
is that, instead of adding c to the positive condition in the first conditional state,
we add {c} to the negative condition.

In the sequel, we use a standard notation for the iterates of the computation of the
least fixpoint of a monotonic function F ∶ L → L, over lattice L whose bottom is � and lub
is ⊔. Namely, F ↑k denotes, for each k ∈ N, F k(�) and F ↑ω denotes ⊔{F k(�) ∣k ∈ N}.
Recall that, for a continuos F , lfp(F ) = F ↑ω.

Example 3.1.17
Let us evaluate the semantics for the tccp agent A1 ∶= A2 ∥ A3 where

A2 ∶= tell(y = 2) ∥ tell(x = y)

A3 ∶= ask(true) → now (x = 0) then tell(z > 0) else A4

A4 ∶= ask(y ≥ 0) → tell(z ≤ 0)

Since there are no process calls, the interpretation I is irrelevant for the result. We
start by computing the semantics for A4, i.e., AJA4KI = lfpM(F ) where

F (R) ∶= {r} ⊔ stutt({y ≥ 0}) ⋅R and

r ∶= (y ≥ 0,∅) ↣ y ≥ 0 ⋅ (y ≥ 0,∅) ↣ y ≥ 0 ∧ z ≤ 0 ⋅ ⊠

The iterates of F are:

F ↑1 = F ({ε}) = {r, stutt({y ≥ 0})}

F ↑2 = F (F ↑1) = {r, stutt({y ≥ 0}) ⋅ r, stutt({y ≥ 0}) ⋅ stutt({y ≥ 0})}

⋮

lfpM(F ) = {( stutt({y ≥ 0}))
n
⋅ r ∣n ∈ N} ⊔ {stutt({y ≥ 0}) ⋯ stutt({y ≥ 0}) ⋯}
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(y ≥ 0,∅) ↣ y ≥ 0

(y ≥ 0,∅) ↣ y ≥ 0 ∧ z ≤ 0

stutt({y ≥ 0})

⊠

(y ≥ 0,∅) ↣ y ≥ 0

(y ≥ 0,∅) ↣ y ≥ 0 ∧ z ≤ 0

stutt({y ≥ 0})

⊠

Figure 3.1: Tree representation of AJA4KI in Example 3.1.17.

(y ≥ 0,∅) ↣ y ≥ 0

(y ≥ 0,∅) ↣ y ≥ 0 ∧ z ≤ 0

stutt({y ≥ 0})

⊠

Figure 3.2: Graph representation of AJA4KI in Example 3.1.17.

Figure 3.1 graphically represents AJA4KI , which consists of a trace for the case in which
the guard is satisfied, and a set of traces for the case in which it suspends. As it can be
observed, the tree in Figure 3.1 consists of an infinite replication of the same pattern. We
can depict such infinite trees as finite graphs, as in Figure 3.2. The back-loop arc is just
a graphical shortcut which represents the (infinite) tree that is obtained by unrolling the
loop. It is important to note that nodes reached by a path of length 2 (via the back-loop
arc) have to be considered as a single arc, thus corresponding just to a one time instant
delay.

With the semantics of A4, we compute AJA3KI = {r1, r2} ∪R where

r1 ∶= (true,∅) ↣ true ⋅ (x = 0,∅) ↣ x = 0 ∧ z > 0 ⋅ ⊠

r2 ∶= (true,∅) ↣ true ⋅ (y ≥ 0,{x = 0}) ↣ y ≥ 0 ⋅ (y ≥ 0,∅) ↣ y ≥ 0 ∧ z ≤ 0 ⋅ ⊠

R ∶= (true,∅) ↣ true ⋅ (true,{y ≥ 0, x = 0}) ↣ true ⋅ AJA4KI

All the traces of AJA3KI start with the conditional store (true,∅) ↣ true corresponding to
the ask agent with guard true. The trace r1 corresponds to the case when (in the current
time instant) the guard x = 0 is satisfied; the trace r2 corresponds to x = 0 not satisfied
and y ≥ 0 satisfied; while we have R when none is satisfied and A4 is executed.

Now we can compute the semantics for A1 by parallel composition of AJA3KI with
AJA2KI = {(true,∅) ↣ (y = 2 ∧ x = y) ⋅ ⊠}.

The combination of the trace r1 in AJA3KI with the trace in AJA2KI does not produce
contributes since the constraint y = 2, when propagated to the second component of r1,
is in contradiction with the positive part of the condition (y = 2 ∧ x = y ∧ x = 0 ≡ false).
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Indeed, (true,∅) ↣ (y = 2 ∧ x = y) ⋅ ((x = 0,∅) ↣ x = 0 ∧ z > 0 ⋅ ⊠)↓(y=2∧x=y) = (true,
∅) ↣ (y = 2 ∧ x = y) ⋅ (false,∅) ↣ false ⋅ ⊠ is not a trace since (false,∅) is not a valid
condition.

The combination of the set of traces R (corresponding to the suspension of the agent
A4) and the tell(y = 2) agent also produces no trace. Definition 3.1.16 prescribes to
compute (true,∅) ↣ y = 2 ∧ x = y ⋅ ⊔{((true,{y ≥ 0, x = 0}) ↣ true ⋅ r′)↓(y=2∧x=y) ∣

r′ ∈ AJA4KI}, which is empty, since y = 2 ∧ x = y É (true,{y ≥ 0, x = 0}) because
y = 2 ∧ x = y ⇒ y ≥ 0. These traces would correspond to the suspension of the agent
A4, and this can happen only when y ≥ 0 is not satisfied, but the first component of the
parallel agent tells y = 2 (thus y ≥ 0 is satisfied). Therefore, only the combination of the
trace r2 in AJA3KI and the trace of AJA2KI produces a trace. Namely

AJA1KI ={(true,∅) ↣ (y = 2 ∧ x = y) ⋅ (y = 2 ∧ x = y,{x = 0}) ↣ (y = 2 ∧ x = y)⋅

(y = 2 ∧ x = y,∅) ↣ (y = 2 ∧ x = y ∧ z ≤ 0) ⋅ ⊠}

Due to the partial nature of the constraint system, the combination of the hiding
operator with non-determinism can make the language behavior non-monotonic. As al-
ready mentioned, this is the reason because for all the languages of the ccp paradigm,
the compositional semantics that have been written either avoid non-monotonic and/or
non-deterministic constructs or restrict their use. Let us show now that we are able to
handle the following example, which is an adaptation to tccp of the one used in [42, 88]
to illustrate the non-monotonicity problem.

Example 3.1.18
Consider the non-monotonic agent

A ∶= ask(x = 1) → tell(true) + ask(true) → tell(y = 2).

It is easy to see that for the initial store true just the second branch can be taken, whereas
for the (greater) initial store x = 1, the two branches can be executed.

Since there are no process calls, for any interpretation I , AJAKI = {r1, r2}, where

r1 ∶= (x = 1,∅) ↣ x = 1 ⋅ (x = 1,∅) ↣ x = 1 ⋅ ⊠

r2 ∶= (true,∅) ↣ true ⋅ (true,∅) ↣ y = 2 ⋅ ⊠

We have two possible traces depending on whether the initial store is strong enough to
entail x = 1 or not.

[42, 88] show that within their semantics they do not collect all possible evaluations
for agent A′ ∶= tell(x = 1) ∥ ∃xA. On the contrary, in our case, since

∃̄Var∖{x} r1 = (x = 1,∅) ↣ x = 1 ⋅ (x = 1,∅) ↣ x = 1 ⋅ ⊠

∃̄Var∖{x} r2 = (true,∅) ↣ true ⋅ (true,∅) ↣ true ⋅ ⊠

only r2 is x-self-sufficient and, by Definition 3.1.16,

AJ∃xAKI ={(true,∅) ↣ true ⋅ (true,∅) ↣ y = 2 ⋅ ⊠}.

By composing we have

AJA′KI = {(true,∅) ↣ x = 1 ⋅ (x = 1,∅) ↣ y = 2 ∧ x = 1 ⋅ ⊠}.
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It is easy to see that the information on the variable x added by the tell agent does not
affect the internal execution of the agent A, as expected.

There are some technical decisions that ensure the correctness of the defined seman-
tics. One can note that in the definition of the propagation operator (Definition 3.1.7),
the propagated information is added not only to the store of the state, but also to the
(positive part of the) condition. This means that the positive part of the conditions in a
trace contains not only the information that has to be satisfied up to that computation
step, but also the constraints that have been added during computation in the previous
time instants. From the computations in the examples above, it may seem that the propa-
gation of the accumulated information in the conditions of the states could be redundant.
However, it is necessary in order to have full abstraction w.r.t. the behavior, otherwise we
would distinguish agents whose behavior is actually the same, as shown in the following
example.

Example 3.1.19

Consider the following two (very similar) agents:

A1 ∶= ask(x > 2) → tell(y = 1) A2 ∶= ask(x > 4) → tell(y = 1)

We have similar but different semantics. Namely,

AJA1KI = {( stutt({x > 2}))
n
⋅ r1 ∣n ∈ N} ⊔ {stutt({x > 2}) ⋯ stutt({x > 2}) ⋯}

r1 = (x > 2,∅) ↣ true ⋅ (x > 2,∅) ↣ y = 1 ⋅ ⊠

AJA2KI = {( stutt({x > 4}))
n
⋅ r2 ∣n ∈ N} ⊔ {stutt({x > 4}) ⋯ stutt({x > 4}) ⋯}

r2 = (x > 4,∅) ↣ true ⋅ (x > 4,∅) ↣ y = 1 ⋅ ⊠

However, consider now the following two agents, which embed A1 and A2 in the same
context:

A′
1 ∶= tell(x = 7) ∥ ask(true) → A1 A′

2 ∶= tell(x = 7) ∥ ask(true) → A2

Then, the two traces corresponding to the satisfaction of the guards are, respectively:

r3 = (true,∅) ↣ x = 7 ⋅ r1↓(x=7) r4 = (true,∅) ↣ x = 7 ⋅ r2↓(x=7)

Since the propagated constraint is stronger than the guards in both the agents, the re-
sulting compositions are the same. In fact, thanks to the accumulation of the store in the
condition, we do not distinguish them:

r1↓(x=7) = r2↓(x=7) = (true,∅) ↣ x = 7 ⋅ (x = 7,∅) ↣ x = 7 ⋅ (x = 7,∅) ↣ x = 7 ∧ y = 1 ⋅ ⊠

This is correct since A′
1 and A′

2 have the same behavior. On the contrary, if the constraint
x = 7 were not added to the condition, but only to the store of the state, then we would
have two different conditional traces for these two agents. Thus, we would lose the full
abstraction, since we would distinguish two agents that behave in the same way.
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(x > 2,∅) ↣ x > 2 ∧ y < 0

⊠

(true,{x > 2}) ↣ true

I(q(x, y))

Figure 3.3: Tree representation for AJAKI in Example 3.1.21.

Fixpoint Denotations of Process Declarations

Now we can finally define the semantics for a set of process declarations D.

Definition 3.1.20 (Fixpoint semantics) Given D ∈ DΠ
C, we define DJDK∶ I → I, for

each p ∈ Π, as

DJDKI (p(x⃗)) ∶= ⊔{AJAKI ∣p(x⃗) ∶− A ∈D}.

The fixpoint denotation of D is F JDK ∶= lfp(DJDK) = DJDK↑ω.
We denote with ≈F the equivalence relation on DΠ

C induced by F . Namely, D1 ≈F
D2 ⇐⇒ F JD1 K = F JD2 K.

The semantics of a tccp program D . A is PJD . AK ∶= AJAKF JDK.

F JDK is well defined since DJDK is continuous (as stated formally in Lemma 3.A.5).
Let us show how the semantics for a set of process declarations is computed by means

of some examples.

Example 3.1.21
Let D ∶= {q(x , y) ∶− A} where

A ∶= now (x > 2) then tell(y < 0) else q(x, y).

Intuitively, the agent waits until x is greater than 2. Once the global store is strong enough
to entail this condition, the constraint y < 0 is added to the store and the computation
ends.

First we need to compute, for each I ∈ I, the evaluation of the body of the process
declaration. Namely,

AJAKI ={r̄} ⊔ {(true,{x > 2}) ↣ true ⋅ s ∣ s ∈ I(q(x, y))}

where r̄ ∶= (x > 2,∅) ↣ x > 2 ∧ y < 0 ⋅ ⊠. Intuitively, the trace r̄ corresponds to the
then branch of the conditional agent, whereas the else branch is represented by a set of
traces, one for each trace in the interpretation of the process call. AJAKI is graphically
represented in Figure 3.3.

The iterates of DJDK are

DJDK↑1 = {q(x, y) ↦ {r̄, (true,{x > 2}) ↣ true}

DJDK↑2 = {
q(x, y) ↦ {r̄, (true,{x > 2}) ↣ true ⋅ r̄,

(true,{x > 2}) ↣ true ⋅ (true,{x > 2}) ↣ true}
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(x > 2,∅) ↣ x > 2 ∧ y < 0

⊠ (true,{x > 2}) ↣ true

Figure 3.4: Graph representation of the fixpoint F JDK(q(x, y)) in Example 3.1.21.

(x = 4,∅) ↣ x = 4 stutt({x = 4})

(x = 4,∅) ↣ x = 4

I(p(x))↓x=4

Figure 3.5: Graph representation for AJAKI in Example 3.1.22.

⋮

DJDK↑ω = {
q(x, y) ↦ {((true,{x > 2}) ↣ true)

n
⋅ r̄ ∣n ∈ N}

⊔{(true,{x > 2}) ↣ true ⋯ (true,{x > 2}) ↣ true ⋯}

The limit F JDK(q(x, y)) = (DJDK↑ω)(q(x, y)) is graphically represented in Figure 3.4.

Example 3.1.22
Let D ∶= {p(x) ∶− A} where A ∶= ask(x = 4) → p(x). First we need to compute, for each
I ∈ I, the evaluation of the body of the process declaration. Namely,

AJAKI ={( stutt({x = 4}))
n
⋅ r̄ ⋅ s ∣n ∈ N, s ∈ I(p(x))} ⊔

{stutt({x = 4}) ⋯ stutt({x = 4}) ⋯}

where r̄ ∶= (x = 4,∅) ↣ x = 4 ⋅ (x = 4,∅) ↣ x = 4. It is worth noticing that the second
conditional state of r̄ corresponds to the delay that is introduced each time that a process
call is run. AJAKI is graphically represented in Figure 3.5.

The iterates of DJDK are

DJDK↑1 = {
p(x) ↦ {(stutt({x = 4}))n ⋅ r̄ ∣n ∈ N} ⊔

{stutt({x = 4}) ⋯ stutt({x = 4}) ⋯}

DJDK↑2 = {
p(x) ↦ {(stutt({x = 4}))n ⋅ r̄ ⋅ r̄ ∣n ∈ N} ⊔

{stutt({x = 4}) ⋯ stutt({x = 4}) ⋯}

⋮

F JDK = {
p(x) ↦ {(stutt({x = 4}))n ⋅ r̄ ⋯ r̄ ⋯ ∣n ∈ N} ⊔

{stutt({x = 4}) ⋯ stutt({x = 4}) ⋯}
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(x = 4,∅) ↣ x = 4 stutt({x = 4})

(x = 4,∅) ↣ x = 4

(x = 4,∅) ↣ x = 4

Figure 3.6: Graph representation of the fixpoint F JDK(p(x)) in Example 3.1.22.

(y > x,∅) ↣ y > x

(y ≤ x,∅) ↣ y ≤ x
stutt({y > x, y ≤ x})

⊠

(y > x,∅) ↣ y > x

I(p(x + 1))↓y>x

Figure 3.7: Graph representation for AJAKI in Example 3.1.23.

F JDK(p(x)) is graphically represented in Figure 3.6. Note that the application of the
propagation operator to the previous iterates removes all the stuttering sequences, and
this is the reason because just the first stuttering sequence remains.

Example 3.1.23
Let D ∶= {p(x , y) ∶− A} where

A ∶= ask(y > x) → p(x + 1, y) + ask(y ≤ x) → skip

As usually done in the tccp community, we assume that we can use expressions of the
form x + 1 directly in the arguments of a process call. We can simulate this behavior by
writing ∃x′ (tell(x′ = x + 1) ∥ p(x′, y)) instead of p(x+1, y) (but introducing a delay of one
time unit). This agent takes two arguments and, if the first is greater or equal than the
second, then it stops; otherwise, it performs a recursive call increasing the first argument
by one, until it becomes greater or equal to the second one. This process can be combined
with other processes to be used as a kind of timer since it forces the time passing during
a given time interval.

We have

AJAKI = {(y > x,∅) ↣ y > x ⋅ (y > x,∅) ↣ y > x ⋅ r↓y>x ∣ r ∈ I(p(x + 1, y))} ⊔

{(y ≤ x,∅) ↣ y ≤ x ⋅ ⊠} ⊔
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(y > x,∅) ↣ y > x

(y ≤ x,∅) ↣ y ≤ x

stutt({y > x, y ≤ x})

⊠(y > x,∅) ↣ y > x

Figure 3.8: Graph representation of DJDK↑1(p(x, y)) in Example 3.1.23.

(y > x,∅) ↣ y > x (y ≤ x,∅) ↣ y ≤ x

⊠

stutt({y > x, y ≤ x})

(y > x,∅) ↣ y > x

(y = x + 1,∅) ↣ y = x + 1(y > x + 1,∅) ↣ y > x + 1

(y > x + 1,∅) ↣ y > x + 1
⊠

Figure 3.9: Graph representation of DJDK↑2(p(x, y)) in Example 3.1.23.

{(stutt({y > x, y ≤ x}))n ⋅ (y > x,∅) ↣ y > x⋅

(y > x,∅) ↣ y > x ⋅ r↓y>x ∣ n ∈ N, r ∈ I(p(x + 1, y))} ⊔

{(stutt({y > x, y ≤ x}))n ⋅ (y ≤ x,∅) ↣ y ≤ x ⋅ ⊠ ∣ n ∈ N} ⊔

{stutt({y > x, y ≤ x}) ⋯ stutt({y > x, y ≤ x}) ⋯}

which is graphically shown in Figure 3.7. For this agent, we have three branches, one for
each condition of the choice and one corresponding to the stuttering possibility.

The first iteration of DJDK is

DJDK↑1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(x, y) ↦ {(y > x,∅) ↣ y > x ⋅ (y > x,∅) ↣ y > x} ⊔
{(y ≤ x,∅) ↣ y ≤ x ⋅ ⊠} ⊔
{(stutt({y > x, y ≤ x}))n ⋅ (y > x,∅) ↣ y > x⋅

(y > x,∅) ↣ y > x ∣ n ∈ N} ⊔

{(stutt({y > x, y ≤ x}))n ⋅ (y ≤ x,∅) ↣ y ≤ x ⋅ ⊠ ∣ n ∈ N} ⊔

{stutt({y > x, y ≤ x}) ⋯ stutt({y > x, y ≤ x}) ⋯}

which is graphically represented in Figure 3.8. Figure 3.9 represents the second iteration
DJDK↑2(p(x, y)), whereas

Figure 3.10 is the graphical representation of F JDK(p(x, y)). By looking at the se-
mantics, it can be observed that the process stops in one time instant when y ≤ x and in
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(y > x,∅) ↣ y > x (y ≤ x,∅) ↣ y ≤ x

⊠

stutt({y > x, y ≤ x})

(y > x,∅) ↣ y > x

(y = x + 1,∅) ↣ y = x + 1(y > x + 1,∅) ↣ y > x + 1

(y > x + 1,∅) ↣ y > x + 1

(y = x + 2,∅) ↣ y = x + 2(y > x + 2,∅) ↣ y > x + 2

⊠

⊠

Figure 3.10: Graph representation of F JDK(p(x, y)) in Example 3.1.23.

1 + 2(y − x) time instants otherwise.

Example 3.1.24

Consider the following program process declaration, already introduced in Chapter 2,
which models a subsystem of a microwave controller. The underlying constraint system is
the (well-known) Herbrand constraint system [41].

microwave(Door , Button, Error) ∶− ∃D ∃B ∃E

( tell(Error = [ ∣ E]) ∥ tell(Door = [ ∣D]) ∥ tell(Button = [ ∣ B])

∥ now(Door = [open ∣D] ∧Button = [on ∣ B])

then (∃E1 tell(E = [1 ∣ E1]) ∥ ∃B1 tell(B = [off ∣ B1]))

else ∃E1 tell(E = [0 ∣ E1])

∥ microwave(D ,B ,E))

This process declaration detects if the door is open while the microwave is turned on.
In that case, it forces that in the next time instant the microwave is turned-off and it emits
an error signal (value 1); otherwise, the agent emits a signal of no error (value 0). Due to
the monotonicity of the store, streams are used to model imperative-style variables [43].
In the example, the streams Error , Door and Button store the values that the simulated
modifiable variables get along the computation. The first three tell agents link the future
values of the streams with the future streams E, D and B. Then, when it is detected a
possible risk (characterized by the guard of the now agent), the microwave is turned off
and an error signal is emitted (by the then branch of the conditional agent). The final
recursive call restarts the same control at the next time instant.

The fixpoint semantics F(microwave(D ,B ,E)) is graphically represented in Figure 3.11,
where:
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(risk1,∅) ↣ state1

(true,{risk1}) ↣ state0

(risk2,∅) ↣ state01

(true,{risk2}) ↣ state00

(risk2,∅) ↣ state11

(risk1,{risk2}) ↣ state10

Figure 3.11: Tree representation of F JDK(microwave(D,B,E)) in Example 3.1.24.

riskk ∶= ∃D ∃B(Door = [open ∣ . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k times

∣D] ∧Button = [on ∣ off ∣ on ∣ . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−1 times

∣ B])

stateb1...bn ∶= ∃E1 ∃D ∃B1(Error = [ ∣ b1 ∣ . . . ∣ bn ∣ E1] ∧Door = [ ∣D]∧

Button = [ ∣ on ∣ off ∣ . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Σni=1bi times

∣B1])

We have coded the indices of stores in the conditional states with a binary number in
order to make the figure more readable. It is worth noticing that the stores labeled with
stateb where the last digit of b is 1 correspond to states where an error is emitted.

All the conditional sequences in the semantics of this process are infinite sequences.
This is consistent with the fact that we are modeling a process that is intended to be active
forever (checking whether the risky situation holds). It is worth noticing that this kind
of processes can be handled only if the semantics is able to capture infinite computations,
which is one of the main features of our proposal.

Full abstraction of F semantics

In the following we formally prove that our semantics F is (correct and) fully abstract
w.r.t. the small-step operational behavior. To formally link hypothetical computations
with real ones, we first need to define an auxiliary operator which, taken an initial store c,
instantiates the hypothetical states of a conditional trace r producing the corresponding
(real) behavioral timed trace. Intuitively, this operator works by consistently adding
to each conditional state the information given by the initial store c, discarding those
sequences which falsify conditions.

Definition 3.1.25 (Instantiation operator) The instantiation operator ⇓∶M×C→C∗

is a partial function defined by structural induction as: ε⇓c ∶= ε; otherwise r⇓false ∶= false;
otherwise ⊠⇓c ∶= c, otherwise

(stutt(η−) ⋅ r′)⇓c ∶= c if ∀c− ∈ η−. c ⊬ c−
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(η ↣ d ⋅ r′)⇓c ∶= c ⋅ (r
′⇓c⊗d) if c⊫ η and (c⊗ d) ≠ false

We abuse notation by denoting with R⇓c the extension of ⇓c to M: R⇓c ∶= {r⇓c ∣ r ∈
R and r⇓c is defined}.

The instantiation operator is consistent w.r.t. the propagation operator (Definition 3.1.7),
in the sense that, for any c′ that entails c, r⇓c = (r↓c′)⇓c (as stated formally in Lemma 3.A.6).
Moreover, the instantiation operator ⇓ “distributes” over the parallel composition operator
∥̄ (Definition 3.1.10) (as stated formally in Lemma 3.A.8).

The key result to prove correctness of F w.r.t. ≈ss is the following theorem which shows
that the small-step behavior of a program P can be determined by instantiation of the
semantics PJP K.

Theorem 3.1.26 For each program P and each c ∈ C, prefix(PJP K⇓c) = BssJP Kc.

The following theorem is the key result to prove full abstraction of F w.r.t. ≈ss .

Theorem 3.1.27 Let P1, P2 be two programs. Then PJP1K = PJP2K if and only if BssJP1K =
BssJP2K.

Proposition 3.1.28 Let D1, D2 ∈ DΠ
C. Then D1 ≈F D2 if and only if ∀A ∈ AΠ

C.PJD1 .
AK = PJD2 . AK.

Correctness and full abstraction is a direct consequence of Theorems 3.1.26 and 3.1.27 and
Proposition 3.1.28.

Corollary 3.1.29 (Correctness and full abstraction of F ) Let D1, D2 ∈ DΠ
C. Then

D1 ≈ss D2 if and only if D1 ≈F D2.

3.2 Big-step Semantics

A small-step behavior contains all the details of the computation. However typically only
some parts of the execution are considered relevant. So frequently is better to reason only
about a specific abstraction of the small-step behavior, instead of dealing with all execution
details. In the literature, many authors (like [43]) call observables all the abstractions of
the small-step behavior of a specific program4 (including the small-step behavior itself as
the degenerate identity abstraction). Moreover, they typically use this same name for the
collection of all observables of a set of declarations.

Many other authors use the term observable property (or simply observable) for an
abstraction function σ which, when applied to the set of traces of a program, delivers the
observations of interest. Then the observation, or observable behavior, of program P is
just the application of σ to the traces of P .

We prefer to use the latter nomenclature and, in the sequel, we call observable behavior
of a program Q w.r.t. observable σ (or simply σ-observable behavior of Q) the image
σ(BssJQK) and we denote it by BσJQK.

4Notice that a tccp program is the syntactic correspondent of a (program’s) expression of a generic
language, while a tccp set of declarations is the syntactic correspondent of a program.
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The observable property which is usually considered in papers dealing with semantics
of ccp languages (e.g. see [47]) is the one that collects the input/output pairs of terminat-
ing computations, including deadlocked ones. Indeed, using the (original version of the)
transition system of Definition 2.2.1, [43] defines the notion of input-output observable
behavior as Oio(A) ∶= {⟨c0, cn⟩ ∣ ⟨A0, c0⟩ →

∗ ⟨An, cn⟩ /→}. In this definition, there is an
implicit reference to a set of declarations D. Since in the sequel we need to state some
formal results for two (different) sets of declarations simultaneously, we use the explicit
notation OioJD . AK instead of Oio(A).

As we already mentioned, in tccp also infinite computations must be considered, for
example when we are modeling reactive systems. However, we nevertheless want to be
able to distinguish if an input-output pair refers to a finite or infinite computation. Thus,
we use input-output pairs with associated termination mode of the form ⟨c0, mode(cn)⟩,
where c0 ∈ C is the input store of the computation, cn ∈ C is the output store (which is
the lub of the stores of the computation) and mode is either fin or inf for finite or infinite
computations, respectively. The intuitive idea is that ⟨c0, fin(cn)⟩ represents all the finite
computations that start from the store c0 and terminate or suspend in a store cn; and
⟨c0, inf (l)⟩ represents the infinite computations with initial store c0 and limit constraint
l.

Definition 3.2.1 Given c, c′ ∈ C such that c′ ⊢ c, an input-output pair with termination
mode is either ⟨c, fin(c′)⟩ or ⟨c, inf (c′)⟩.

We denote by IO the set of input-output pairs with termination mode and by IO the
domain ℘(IO), ordered by set inclusion.

Clearly, (IO, ⊆, ⋃, ⋂, IO, ∅) is a complete lattice.

Definition 3.2.2 (Input-output behavior of programs) The input-output observable
is defined as

io(T ) ∶={⟨c0, fin(cn)⟩ ∣ c0⋯cn ∈ T} ∪ {⟨c0, inf (⊗i≥0ci)⟩ ∣ c0⋯cn⋯ ∈ T}.

For each D ∈ DΠ
C and A ∈ AΠ

C, the induced input-output behavior BioJD . AK is defined
as io(BssJD .AK). We denote by ≈io the equivalence relation between process declarations
induced by Bio, namely D1 ≈io D2 ⇐⇒ ∀A ∈ AΠ

C. B
ioJD1 . AK = BioJD2 . AK.

We denote by πF the projection which selects just the pairs whose mode is fin and
by IOF we denote πF (IO). Moreover, we denote by Bio

F JD . AK the finite fragment of
BioJD . AK i.e., πF (BioJD . AK).

Note that, by Definitions 3.1.1 and 3.2.2,

BioJD . A0K ={⟨c0, fin(cn)⟩ ∣ c0 ∈ C, ⟨A0, c0⟩ →
∗ ⟨An, cn⟩ /→} ∪

{⟨c0, inf (⊗i≥0ci)⟩ ∣ c0 ∈ C, ⟨A0, c0⟩ → ⋯ → ⟨Ai, ci⟩ → ⋯}

In the sequel, we define an abstract interpretation ([33]) of the small-step semantics
PJD.AK (Definition 3.1.20) which gives BioJD.AK. Then we prove that the finite fragment
of this abstraction (i.e., Bio

F JD.AK) is essentially isomorphic to OioJD .AK. Actually, there
is a negligible difference between Bio

F JD . AK and OioJD . AK due to the change we made
in the definition of the small-step operational semantics. We will state the formal result
in Subsection 3.2.2.
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To define the semantics modeling the input-output observable as suggested by the
abstract interpretation approach (see Section 1.3), we proceed as described in the following.

First, we formalize program properties of interest (in this particular case the input-

output behavior) as a Galois Insertion (M, ⊑) −−−−→Ð→←−−−−−
α

γ
(IO, ⊆) and then we lift it over

interpretations I −−−−→Ð→←−−−−−
α̇

γ̇
[PC → IO] by function composition as α̇(f) = α ○f . The best

correct (optimal) abstract version of the semantics DJDK is simply obtained as DαJDK ∶=
α̇○DJDK○ γ̇. Abstract interpretation theory assures that FαJDK ∶= lfp(DαJDK) is the best
correct approximation of F JDK. Correct because α(F JDK) ⊆ FαJDK and best because it
is the minimum (w.r.t. ⊆) of all correct approximations.

3.2.1 Input-output semantics with infinite outcomes

Now we formally define the Galois Insertion which abstracts conditional traces to input-
output pairs with termination mode. In the sequel, we denote by last(s) the partial
function that, for a non-empty finite sequence s, gives its last element and is otherwise
undefined.

Definition 3.2.3 (Input-Output abstraction) Given any M ∈ M, we define

αio(M) ∶= {⟨c0, fin(cn)⟩ ∣ c0 ∈ C, r ∈M, last(r⇓c0) = cn} ∪

{⟨c0, inf (⊗i≥0ci)⟩ ∣ c0 ∈ C, r ∈M, r⇓c0 = c0 . . . ci . . .}

(3.2.1)

γio(P ) ∶= ⊔{r ∈ M ∣ ⟨c0, fin(cn)⟩ ∈ P, last(r⇓c0) = cn} ⊔

⊔{r ∈ M ∣ ⟨c0, inf (c)⟩ ∈ P, r⇓c0 = c0 . . . ci . . . , c = ⊗i≥0ci}

(3.2.2)

We abuse notation and denote with the same symbols the lifting to interpretations, i.e.,
αio(I) ∶= αio ○I , γio(I

α) ∶= γio ○I
α.

(M, ⊑, ⊔, ⊓, M, {ε}) −−−−−→Ð→←−−−−−−−
αio

γio
(IO, ⊆, ⋃, ⋂, IO, ∅) is a Galois Insertion (as stated for-

mally in Lemma 3.A.9).
The input-output behavior of a program is indeed obtainable by abstraction of its

(concrete) semantics.

Proposition 3.2.4 Let D ∈ DΠ
C and A ∈ AΠ

C. Then, αio(PJD . AK) = BioJD . AK.

Now (as anticipated), following the (classical) abstract interpretation approach, we
define the optimal abstract version of D as Dio ∶= αio ○ D ○ γio ,5 and thus the best
(possible) correct approximation w.r.t. αio of the semantic function F is the least fixpoint
of Dio , i.e., F ioJDK ∶= lfp(DioJDK). Unfortunately, F ioJDK turns out to be very imprecise,
mainly because the information contained in the input-output pairs is not enough to
keep the synchronization between parallel processes. Indeed, the declarations equivalence
induced by F io is not correct w.r.t. ≈io (Definition 3.2.2), since we can have two programs
with the same F io that have different Bio , as shown by the following example.

Example 3.2.5
Consider the two sets of declarations D1 ∶= {d1, d2} and D2 ∶= {d1, d3} where

d1 ∶= p(x , y) ∶− q(x) ∥ ask(true) → now x = 2 then tell(y = 0) else tell(y = 1)

5Although possible, a direct (expanded) definition of Dio is not relevant for our present purposes.
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d2 ∶= q(x) ∶− tell(x = 2)

d3 ∶= q(x) ∶− ask(true) → tell(x = 2)

Clearly, D2 differs from D1 just because of the delay in adding the constraint x = 2 to the
store. This difference shows up in the input-output behavior of p(x , y). Indeed,

αio(PJD1 . p(x, y)K) = {⟨c, fin(c ∧ x = 2 ∧ y = 0)⟩ ∣ c ∈ L}

αio(PJD2 . p(x, y)K) = {⟨c, fin(c ∧ y = 0)⟩ ∣ c ∈ L, c⇒ x = 2} ∪

{⟨c, fin(c ∧ x = 2 ∧ y = 1)⟩ ∣ c ∈ L, c⇏ x = 2}

and then (by Proposition 3.2.4) D1 /≈io D2 . However, the abstract fixpoint semantics F io

does not distinguish D1 from D2 . Indeed,

F ioJD1K = F ioJD2K =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

q(x) ↦ {⟨c, fin(c ∧ x = 2)⟩ ∣ c ∈ L}

p(x, y) ↦ {⟨c, fin(c ∧ y = 0)⟩ ∣ c ∈ L, c⇒ x = 2}} ∪

{⟨c, fin(c ∧ x = 2 ∧ y = 1)⟩ ∣ c ∈ L, c⇏ x = 2}

Given that F io is the best possible approximation, this also formally proves that it is
not possible to have a correct input-output semantics defined solely on the information
provided by the input/output pairs (some more information in denotations is necessarily
needed to be correct).

This also formally justifies (a posteriori) why [43] defined Oio(A) as a filter of a more
concrete semantics instead of using a direct definition.

3.2.2 Modeling the input-output semantics of [43]

In this section, we formally show that the original input-output semantics of tccp OioJD.AK
(defined in [43]) is essentially isomorphic to Bio

F JD.AK (the finite fragment of the semantics
introduced in the previous section).

Theorem 3.2.6 Let P1 and P2 be two tccp programs such that no trace in PJP1K ⊔ PJP2K
is a failed conditional trace. Then, OioJP1K = OioJP2K if and only if Bio

F JP1K = Bio
F JP2K.

This theorem does not hold for any pair of tccp programs. When none of the programs
reaches store false (along some execution path), we actually have the same input-output
pairs (except for the tag fin). However, when the store false is reached during a computa-
tion, this is no longer necessarily true, as shown by the following example. This explains
why we qualify as “essentially isomorphic” the relation between OioJD.AK and Bio

F JD.AK.

Example 3.2.7
Let P1 ∶=D . loop and P2 ∶=D . tell(false), where D ∶= {loop ∶− tell(false) ∥ loop}. We have
that Bio

F JP1K = Bio
F JP2K = {⟨c, fin(false)⟩} while OioJP1K = ∅ ≠ OioJP2K = {⟨c, false⟩}.

The difference is due to the change we made in the definition of the small-step op-
erational semantics. More specifically, in the operational semantics that we use (Defi-
nition 2.2.1), when the store false is reached, we cannot have further transitions. We
devised → in this way to be conform with the original rationale of the ccp paradigm. As
a consequence, when a sequence computes false, it is considered as a failed computation
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with output false. In contrast, in the operational semantics of [43], the transition relation
→ does not consider the false store as a special case and then it is possible to execute an
agent on the false store.

Note that, if one is interested, it is straightforward to modify Definition 3.2.3 to com-
pute exactly OioJP K.

To conclude, it is interesting to note that Bio
F JP K can be equivalently obtained by first

appropriately filtering the conditional traces and then applying the abstraction αio . For-
mally, given M ∈ M, let πMF (M) ∶= {r ∈M ∣ r ends with ⊠ or it contains a stuttering} and

let MF ∶= πMF (M). Note that this domain contains only traces such that the application
of the ⇓ operator produces just finite sequences of stores. It is straightforward to prove
that the following diagram commutes

(IO, ⊆) (IOF , ⊆)

(M, ⊑) (MF , ⊑)
πM
F

πF

α
io

α
io

3.3 Related Work

As already stated at the beginning of this chapter, for timed concurrent constraint lan-
guages, the presence of

• non-determinism,
• local variables and
• timing constructs which are able to handle negative information

significantly complicates the definition of a fully abstract compositional semantics. In
this section, we briefly show the impact of these difficulties when defining appropriate
denotational semantics for (timed) concurrent constraint languages.

Most of the defined semantics are inspired in that of ccp, and characterize the finite
input-output or strongest postcondition observable behaviors. The strongest postcondition
observable collects the pairs of input-output stores such that the program does not produce
additional information, i.e., the input coincides with the output.

In [41], the difficulties for handling nondeterminism and infinite behavior in the ccp
paradigm were investigated. The authors showed that the presence of nondeterminism and
synchronization requires relatively complex structures for the denotational model of (non
timed) ccp languages. Moreover, infinite behaviors (which become natural in the timed
extensions) are an additional complication. Traditionally, solutions to these difficulties
have been based on the introduction of restrictions on the language.

In [110] the basic ideas for the definition of appropriate semantics for ccp languages
are illustrated. More specifically, it is given a model based on observing the resting points
of (finite) ccp processes. The defined semantics is fully abstract for the determinate frag-
ment of ccp (i.e., choice agents have always a single branch). For (finite) nondeterministic
processes that are monotonic in nature, a fully abstract semantics is given basing on the
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observation of ask/tell interactions. In [49], a simple denotational semantics fully ab-
stract w.r.t. the upward-closed observable behavior is defined for confluent ccp, which
is the subclass of ccp programs whose observable behavior does not depend on the cho-
sen (non-deterministic) branch. They also define a correct semantics characterizing the
input-output relation of (finite) processes for the restricted-choice ccp, which is a confluent
sublanguage of ccp (syntactically restricted to choice agents where either all the branches
have the same guard or the guards are all mutually exclusive). As the basis for a method
to prove (partial) correctness of ccp programs, in [42] a denotational semantics which char-
acterizes the strongest postcondition is given. The semantics is fully abstract for confluent
ccp. It is also shown that the strongest postcondition semantics is not compositional w.r.t.
the hiding agent.

The introduction of time in the ccp paradigm raises even more difficulties, in all dif-
ferent timed languages that have been proposed. As we have shown in Example 3.1.18,
due to the partial nature of the constraint system, the combination of the hiding operator
with non-determinism can make the language behavior non-monotonic and complicates
the definition of a compositional, fully abstract denotational semantics [41, 88]. Based on
the deterministic fragment of ccp, in [106] the authors defined the tcc language and its
semantics which is fully abstract just for hiding free processes. This restriction allows one
to avoid the problem of non-monotonic behaviors.

The ntcc language extends tcc with non-determinism [87] and, inspired by the ele-
gant model for ccp based on closure operators of [110], a denotational semantics for the
strongest postcondition is defined. The semantics is fully abstract for locally-independent
processes, i.e., processes in which the non-monotonic agents do not contain bounded vari-
ables (i.e., local variables via the hiding construct). The problem of compositionality in
the literature shows up if we try to compute the denotations for ∃xA in a compositional
way. For example, in [87] what happens is that, if we hide the information about x from
the denotations of A, the result is not a strongest postcondition for ∃xA. More recently,
[51] proposed a denotational semantics of the fragment of ntcc that excludes the timing
construct unless.

The Default tcc language [107] is an extension of tcc that makes use of default values
in order to model strong preemption. It adds to tcc language a limited form of negative
information handling, with a construct that has to be used under so called stable assump-
tions for the negative information in order to avoid chaotic behaviors (notion borrowed
from reactive languages like Esterel [12]). This aids to overcome the problem of the
non-monotonic behavior since, in some sense, defaults force to have the Monotonicity
property of Definition 3.1.4. The compositional semantics proposed in [107] is fully ab-
stract for agents which satisfy stable assumptions. Their denotational model associates
a condition to the computation which plays a similar role to the first positive condition
of our conditional traces (but we can allow more behaviors thanks to the others positive
and negative conditions along the trace). However, they show that the hiding operator
is not definable compositionally in this specific model since its semantics does not satisfy
the local determinacy assumption. In [108] the authors extend this denotational model in
order to model also the hiding operator and they show its full abstraction for determinate
programs. Although the semantics proposed in [107] and [108] are compositional and fully
abstract, they do not cover the difficulty derived from the interaction of non-determinism
with hiding operators and time constructs which handle negative information. Further-
more, the Default tcc language however has a limited expressive power compared to tccp



52 3. Small-step and Big-step Semantics

since it is deterministic and does not have process calls (and thus is not Turing complete).

The most recent dialect of timed ccp we know, the utcc language, was introduced in [90]
as an extension of tcc for modeling mobility (communication of private names, typically
used in security protocols or mobile systems). In [50], a denotational model for utcc pro-
cesses based on a simple domain is defined for data-flow analysis. This semantics is fully
abstract only for the monotonic fragment of the language. For the same language, [90] de-
fines a denotational semantics characterizing the input-output behavior of processes. This
semantics is fully abstract for the monotonic fragment of utcc and is based on temporal
formulas.

To conclude, to our knowledge, ours is the only proposal which defines a fully abstract
semantics for a full non-deterministic dialect of timed ccp with “negative” constructs and
local variables (having so a non-monotonic behavior).

3.4 Discussion on the results

In this chapter, we have presented a small-step semantics that is fully abstract w.r.t. the
tccp language behavior and that is suitable to be used as the basis of semantics-based
program manipulation techniques such as abstract diagnosis. The task of defining a com-
positional fully-abstract semantics for the language has shown to be difficult due to the
non-monotonic nature of the language, which is a characteristic shared with other concur-
rent languages of the ccp family. However, by defining a more elaborated semantic domain
(that uses conditions to model hypothetical computations) and a suitable interpretation
of the agents’ behavior, we have encompassed these difficulties.

To our knowledge, this is the first fully abstract condensed compositional denotational
semantics for a non-deterministic language in the ccp family that covers the whole lan-
guage.

We have also defined a big-step semantics for tccp as an abstraction of the small-step
one. This semantics collects the limit stores of (finite and infinite) computations. We
have proven that its fragment for finite computations is precise enough to recover the
original input-output semantics of the language [43]. Moreover, we also have proven that
it is not possible to have a correct input-output semantics which is defined solely on the
information provided by the input/output pairs.

As future work, we plan to investigate further on applications of our semantics to obtain
novel analysis and verification methods. Moreover, we plan to adapt the ideas presented in
this chapter to define appropriate fully-abstract semantics for other concurrent languages
of the ccp family, such as ntcc, utcc and tcc. These adaptations of the semantics are not
immediate, since these languages have significant differences w.r.t. tccp, but (given the
richness of tccp w.r.t. the other languages) we are confident that the required effort will be
reasonable. Thanks to this, we will be able to straightforwardly adapt the semantic-based
analysis and verification methodology defined for tccp to such languages.
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3.A Proofs

3.A.1 Proofs of Section 3.1

By construction, we can see that the conditional traces computed by A always satisfy that
the store in a given time instant entails the positive condition. Formally,

Property 3.A.1 Let A ∈ AΠ
C, I ∈ IΠ and r ∈ AJAKI . For each conditional tuple (η+,

η−) ↣ a occurring in r, a ⊢ η+.

Proof.
This property is directly verified by (3.1.7) and (3.1.8) of Definition 3.1.16: when a guard is
added to the positive condition, it is also added to the correspondent store, and propagated
to the subsequent trace.

There exists a relation between the propagation operator ↓ and the lub ⊗ of the con-
straint system: the consecutive propagation of two constraints (r↓c)↓c′ is equivalent to
r↓(c⊗c′).

Lemma 3.A.2 Let c, c′ ∈ C and r ∈ M such that (r↓c′)↓c is defined. Then r↓(c⊗c′) is
defined and (r↓c′)↓c = r↓(c⊗c′).

Proof.
We proceed by structural induction on r.

r = ε and r = ⊠ Straightforward.

r = (η+, η−) ↣ d ⋅ r′ By hypothesis, (r↓c′)↓c is defined, thus, c≫ (η+⊗c′, η−) and (r′↓c′)↓c
is defined. It follows directly that c ⊗ c′ ≫ (η+, η−) and, by inductive hypothesis,
(r′↓c⊗c′) is defined. Thus, (r↓c⊗c′) is defined too.

(r↓c′)↓c =(((η
+, η−) ↣ d ⋅ r′)↓c′)↓c

[ by Definition 3.1.7 ]

=((c′ ⊗ η+, η−) ↣ c′ ⊗ d ⋅ r′↓c′)↓c

[ by Definition 3.1.7 ]

=(c⊗ c′ ⊗ η+, η−) ↣ c⊗ c′ ⊗ d ⋅ (r′↓c′)↓c

[ by Inductive Hypothesis ]

=(c⊗ c′ ⊗ η+, η−) ↣ c⊗ c′ ⊗ d ⋅ r′↓c⊗c′

[ by Definition 3.1.7 ]

=r↓c⊗c′

r = stutt(η−) ⋅ r′ By hypothesis, (r↓c′)↓c is defined, thus, for all c− ∈ η−, c ⊬ c− and
c′ ⊬ c−. Furthermore, (r′↓c′)↓c is defined as well. It follows directly that for all
c− ∈ η−, c⊗ c′ ⊬ c− and, by inductive hypothesis, (r′↓c⊗c′) is defined. Thus, (r↓c⊗c′)
is defined too.

(r↓c′)↓c =((stutt(η−) ⋅ r′)↓c′)↓c

[ by Definition 3.1.7 ]
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=(stutt(η−) ⋅ r′↓c′)↓c

[ by Definition 3.1.7 ]

= stutt(η−) ⋅ (r′↓c′)↓c

[ by Inductive Hypothesis ]

= stutt(η−) ⋅ r′↓c⊗c′

[ by Definition 3.1.7 ]

=r↓c⊗c′

There exists a relation between the parallel composition and the operator of propagation
as stated by the following lemma.

Lemma 3.A.3 Let r1, r2 ∈ M and c ∈ C such that r1↓c ∥̄ r2↓c is defined. Then (r1 ∥̄ r2)↓c
is defined and r1↓c ∥̄ r2↓c = (r1 ∥̄ r2)↓c.

Proof.
We proceed by structural induction on r1. Note that, since r1↓c ∥̄ r2↓c is defined, it follows
that r1↓c and r2↓c are defined as well.

r1 = ε (or r1 = ⊠) and any r2 The statement follows directly from Definitions 3.1.7
and 3.1.10.

r1 = (η
+

1, η
−

1) ↣ d1 ⋅ r
′

1 and r2 = (η
+

2, η
−

2) ↣ d2 ⋅ r
′

2 Since r1↓c and r2↓c are defined, it fol-
lows that c is consistent with both η1 = (η+1 , η

−
1 ) and η2 = (η+2 , η

−
2 ), and thus, with

η1 ⊗ η2. We have to distinguish two cases.

c⊗ d1 ≠ false and c⊗ d2 ≠ false By inductive hypothesis, (r′1 ∥̄ r
′
2)↓c is defined

and, since c≫ η1 ⊗ η2, (r1 ∥̄ r2)↓c is defined as well.

r1↓c ∥̄ r2↓c =((η
+
1 , η

−
1 ) ↣ d1 ⋅ r

′
1)↓c ∥̄ ((η+2 , η

−
2 ) ↣ d2 ⋅ r

′
2)↓c

[ by Definition 3.1.7 ]

=((η+1 ⊗ c, η
−
1 ) ↣ d1 ⊗ c ⋅ r

′
1↓c) ∥̄ ((η+2 ⊗ c, η

−
2 ) ↣ d2 ⊗ c ⋅ r

′
2↓c)

[ by Definition 3.1.10 ]

=(η+1 ⊗ η
+
2 ⊗ c, η

−
1 ∪ η

−
2 ) ↣ d1 ⊗ d2 ⊗ c ⋅ (r

′
1↓c ∥̄ r

′
2↓c)

[ by Inductive Hypothesis ]

=(η+1 ⊗ η
+
2 ⊗ c, η

−
1 ∪ η

−
2 ) ↣ d1 ⊗ d2 ⊗ c ⋅ (r

′
1 ∥̄ r

′
2)↓c

[ by Definition 3.1.7 ]

=(r1 ∥̄ r2)↓c

c⊗ d1 = false or c⊗ d2 = false In this case, r1↓c ∥̄ r2↓c reaches the store false in
one step, as also occurs when we compute (r1 ∥̄ r2)↓c:

r1↓c ∥̄ r2↓c =((η
+
1 , η

−
1 ) ↣ d1 ⋅ r

′
1)↓c ∥̄ ((η+2 , η

−
2 ) ↣ d2 ⋅ r

′
2)↓c

[ by Definition 3.1.7 and Definition 3.1.10 ]

=(η+1 ⊗ η
+
2 ⊗ c, η

−
1 ∪ η

−
2 ) ↣ false ⋅ ⊠

[ by Definition 3.1.7 and Definition 3.1.10 ]

=(r1 ∥̄ r2)↓c
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r1 = (η
+

1, η
−

1) ↣ d1 ⋅ r
′

1 and r2 = stutt(η−2) ⋅ r
′

2 Since r1↓c and r2↓c are defined, we have
that c ≫ η1 and c ⊬ c− for all c− ∈ η−2 . Therefore, c ≫ (η+1 , η

−
1 ∪ η

−
2 ). By inductive

hypothesis, (r′1 ∥̄ r
′
2)↓c is defined, thus also (r1 ∥̄ r2)↓c is defined.

r1↓c ∥̄ r2↓c =((η
+
1 , η

−
1 ) ↣ d1 ⋅ r

′
1)↓c ∥̄ (stutt(η−2 ) ⋅ r

′
2)↓c

[ by Definition 3.1.7 ]

=((η+1 ⊗ c, η
−
1 ) ↣ d1 ⊗ c ⋅ r

′
1↓c) ∥̄ (stutt(η−2 ) ⋅ r

′
2↓c)

[ by Definition 3.1.10 ]

=(η+1 ⊗ c, η
−
1 ∪ η

−
2 ) ↣ d1 ⊗ c ⋅ (r

′
1↓c ∥̄ r

′
2↓c)

[ by Inductive Hypothesis ]

=(η+1 ⊗ c, η
−
1 ∪ η

−
2 ) ↣ d1 ⊗ c ⋅ (r

′
1 ∥̄ r

′
2)↓c

[ by Definition 3.1.7 ]

=(r1 ∥̄ r2)↓c

r1 = stutt(η−1) ⋅ r
′

1 and r2 = stutt(η−2) ⋅ r
′

2 Since r1↓c and r2↓c are defined, we have that
c does not entail any constraint in η−1 ∪ η

−
2 . By inductive hypothesis, (r′1 ∥̄ r

′
2)↓c is

defined, thus, we can conclude that also (r1 ∥̄ r2)↓c is defined.

r1↓c ∥̄ r2↓c =(stutt(η−1 ) ⋅ r
′
1)↓c ∥̄ (stutt(η−2 ) ⋅ r

′
2)↓c

[ by Definition 3.1.7 ]

=(stutt(η−1 ) ⋅ r
′
1↓c) ∥̄ (stutt(η−2 ) ⋅ r

′
2↓c)

[ by Definition 3.1.10 ]

= stutt(η−1 ∪ η
−
2 ) ⋅ (r

′
1↓c ∥̄ r

′
2↓c)

[ by Inductive Hypothesis ]

= stutt(η−1 ∪ η
−
2 ) ⋅ (r

′
1 ∥̄ r

′
2)↓c

[ by Definition 3.1.7 ]

=(r1 ∥̄ r2)↓c

An important technical result states that the evaluation function for agents A is closed
under context embedding. A context C[ ] consists in a tccp agent with a hole, which means
that C[A] represents the result of replacing the hole in C[ ] with the agent A.

Lemma 3.A.4 Let A1,A2 ∈ AΠ
C and I ∈ I. Then AJA1KI = AJA2KI if and only if, for all

context C[ ], AJC[A1]KI = AJC[A2]KI .

Proof.
⇐ Directly holds.

⇒ This implication follows from Definition 3.1.16. The evaluation function A is defined
by composition of the semantics of its subagents. In particular, the semantics of both,
C[A1] and C[A2], is computed from the semantics of A1 and A2, respectively. Since
A1 and A2 are equivalent, then also the semantics of C[A1] and C[A2] coincide.

Lemma 3.A.5 For each A ∈ AΠ
C and each D ∈ DΠ

C, AJAK and DJDK are continuos.
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Proof.

Consider A ∈ AΠ
C and D ∈ DΠ

C. To prove the continuity of AJAK, we have to verify two
properties: monotonicity and finitarity. The continuity of DJDK follows directly from the
continuity of AJAK and from Definition 3.1.20.

Monotonicity. It is sufficient to show that for each I1,I2 ∈ I and and for each A ∈ AΠ
C,

I1 ⊑ I2 ⇒AJAKI1
⊑ AJAKI2

. Observe that the only case in which A depends on the
interpretation is the case of the process call.

By definition of ⊑, I1(p(x⃗)) ⊑ I2(p(x⃗)), thus:

AJp(x⃗)KI1
= ⊔{(true,∅) ↣ true ⋅ r ∣ r ∈ I1(p(x⃗))}

⊑ ⊔{(true,∅) ↣ true ⋅ r ∣ r ∈ I2(p(x⃗))} = AJp(x⃗)KI2

Finitarity. Again, it is sufficient to consider the evaluation function A for the case of the
process call. AJAKI depends on a finitary subset of I , in particular on the subset
regarding p(x⃗) which is a finitary set of conditional traces closed by prefix.

Lemma 3.A.6 Let r ∈ M and c, c′ ∈ C such that c ⊢ c′ and r⇓c is defined. Then (r↓c′)⇓c
is defined and r⇓c = (r↓c′)⇓c.

Proof.

By hypothesis, r⇓c is defined, thus c is compatible with all the conditions occurring in
r. Since c ⊢ c′, it is easy to notice that also c′ is compatible with all the conditions
occurring in r, thus r↓c′ is defined. Then, (r↓c′)⇓c is defined as well. If c = false, by
Definition 3.1.25, r⇓false = false = (r↓c′)⇓false . Otherwise, if c ≠ false, we proceed by
induction on the structure of r.

r = ε and r = ⊠ The statement follows directly from Definitions 3.1.7 and 3.1.25.

r = (η+, η−) ↣ d ⋅ r′ We distinguish three sub-cases.

d⊗ c ≠ false Since c ⊢ c′, it follows that d⊗ c′ ≠ false, thus:

(r↓c′)⇓c = (((η+, η−) ↣ d ⋅ r′)↓c′)⇓c

[ by Definition 3.1.7 ]

= ((η+ ⊗ c′, η−) ↣ d⊗ c′ ⋅ r′↓c′)⇓c

[ by Definition 3.1.25 ]

= c ⋅ (r′↓c′)⇓c⊗d⊗c′

[ by Inductive Hypothesis ]

= c ⋅ r′⇓c⊗d⊗c′

[ since c ⊢ c′ ]

= c ⋅ r′⇓c⊗d

By Definition 3.1.25, r⇓c = ((η+, η−) ↣ d ⋅ r′)⇓c = c ⋅ r
′⇓c⊗d, thus r⇓c = (r↓c′)⇓c.
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d⊗ c = false and d⊗ c′ ≠ false We have that:

(r↓c′)⇓c = ((η+, η−) ↣ d ⋅ r′↓c′)⇓c

[ by Definition 3.1.7 ]

= ((η+ ⊗ c′, η−) ↣ d⊗ c′ ⋅ r′↓c′)⇓c

[ by Definition 3.1.25 ]

= c ⋅ false

By Definition 3.1.25, r⇓c = ((η+, η−) ↣ d ⋅ r′)⇓c = c ⋅ false, thus r⇓c = (r↓c′)⇓c.

d⊗ c′ = false Since c ⊢ c′, it follows that d⊗ c = false, thus:

(r↓c′)⇓c = (((η+, η−) ↣ d ⋅ r′)↓c′)⇓c

[ by Definition 3.1.7 ]

= ((η+ ⊗ c′, η−) ↣ false ⋅ ⊠)⇓c

[ by Definition 3.1.25 ]

= c ⋅ false

By Definition 3.1.25, it follows that r⇓c = c ⋅ false = (r↓c′)⇓c.

r = stutt(η−) ⋅ r′ By Definition 3.1.25, it follows that:

(r↓c′)⇓c = ((stutt(η−) ⋅ r′)↓c′)⇓c

[ by Definition 3.1.7 ]

= (stutt(η−) ⋅ r′↓c′)⇓c

[ by Definition 3.1.25 ]

= c

By Definition 3.1.25, r⇓c = (stutt(η−) ⋅ r′)⇓c = c, thus r⇓c = (r↓c′)⇓c.

In order to formulate the following Lemma 3.A.8, we need to introduce the counterpart
of ∥̄ on behavioral timed traces.

Definition 3.A.7 Let s, s1, s2 ∈ C∗. ∥̆∶C∗ ×C∗ → C∗ is defined by structural induction
as:

s ∥̆ ε ∶= s ε ∥̆ s ∶= s (3.A.1a)

(c1 ⋅ s1) ∥̆ (c2 ⋅ s2) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

(c1 ⊗ c2) ⋅ (c2 ⊗ s1 ∥̆ c1 ⊗ s2) if c1 ⊗ c2 ≠ false

false if c1 ⊗ c2 = false
(3.A.1b)

where, by abusing notation, c⊗ (c1⋯cn) denotes (c⊗ c1)⋯(c⊗ cn).

We extend this operator to sets of behavioral timed traces as S1 ∥̆ S2 = {s1 ∥̆ s2 ∣ s1 ∈

S1 and s2 ∈ S2}.

Lemma 3.A.8 Let c ∈ C; A1,A2 ∈ AΠ
C; I ∈ I; r1 ∈ AJA1KI and r2 ∈ AJA2KI such

that r1 ∥̄ r2, r1⇓c and r2⇓c are defined. Then, (r1 ∥̄ r2)⇓c is defined and r1⇓c ∥̆ r2⇓c =

(r1 ∥̄ r2)⇓c.
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Proof.
Since both r1⇓c and r2⇓c are defined, c satisfies all the conditions in r1 and r2. It is easy to
notice from Definition 3.1.10 that c satisfies also the conditions of r1 ∥̄ r2, thus, (r1 ∥̄ r2)⇓c
is defined as well. We proceed to prove that r1⇓c ∥̆ r2⇓c = (r1 ∥̄ r2)⇓c by induction on the
structure of r1.

r1 = ε and any r2 By Definition 3.1.10, (r1 ∥̄ r2)⇓c = (ε ∥̄ r2)⇓c = r2⇓c. By Defini-

tion 3.1.25 and by Equation (3.A.1a), we obtain: r1⇓c ∥̆ r2⇓c = ε ∥̆ r2⇓c = r2⇓c. Thus,

r1⇓c ∥̆ r2⇓c = (r1 ∥̄ r2)⇓c.

r1 = ⊠ and any r2 ≠ ε By Definition 3.1.10, (r1 ∥̄ r2)⇓c = (⊠ ∥̄ r2)⇓c = r2⇓c. By Defi-

nition 3.1.25 and by Equation (3.A.1b), r1⇓c ∥̆ r2⇓c = c ∥̆ r2⇓c = r2⇓c, since r2 ≠ ε.

Thus, r1⇓c ∥̆ r2⇓c = (r1 ∥̄ r2)⇓c.

r1 = η1 ↣ d1 ⋅ r
′

1 and r2 = η2 ↣ d2 ⋅ r
′

2

d1 ⊗ d2 ≠ false

(r1 ∥̄ r2)⇓c = ((η1 ↣ d1 ⋅ r
′
1) ∥̄ (η2 ↣ d2 ⋅ r

′
2))⇓c

[ by Definition 3.1.10 ]

= (η1 ⊗ η2 ↣ d1 ⊗ d2 ⋅ (r
′
1↓d2 ∥̄ r

′
2↓d1))⇓c

[ by Definition 3.1.25 ]

= c ⋅ (r′1↓d2 ∥̄ r
′
2↓d1)⇓c⊗d1⊗d2

[ by Inductive Hypothesis ]

= c ⋅ ((r′1↓d2)⇓c⊗d1⊗d2 ∥̆ (r′2↓d1)⇓c⊗d1⊗d2)

[ by Lemma 3.A.6 ]

= c ⋅ (r′1⇓c⊗d1⊗d2 ∥̆ r
′
2⇓c⊗d1⊗d2)

[ d1 (resp. d2) is entailed by the stores in r′1 (resp. r′2) ]

= c ⋅ (r′1⇓c⊗d1 ∥̆ r
′
2⇓c⊗d2)

[ by Equation (3.A.1b) ]

= (c ⋅ r′1⇓c⊗d1) ∥̆ (c ⋅ r′2⇓c⊗d2)

By Definition 3.1.25, r1⇓c ∥̆ r2⇓c = (c ⋅ r′1⇓c⊗d1) ∥̆ (c ⋅ r′2⇓c⊗d2); therefore, we con-

clude r1⇓c ∥̆ r2⇓c = (r1 ∥̄ r2)⇓c.

d1 ⊗ d2 = false

(r1 ∥̄ r2)⇓c = ((η1 ↣ d1 ⋅ r
′
1) ∥̄ (η2 ↣ d2 ⋅ r

′
2))⇓c

[ by Definition 3.1.10 ]

= (η1 ⊗ η2 ↣ false ⋅ ⊠)⇓c

[ by Definition 3.1.25 ]

= c ⋅ false

By Definition 3.1.25 and by Equation (3.A.1b), r1⇓c ∥̆ r2⇓c = c ⋅ false, thus

r1⇓c ∥̆ r2⇓c = (r1 ∥̄ r2)⇓c.
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r1 = η1 ↣ d1 ⋅ r
′

1 and r2 = stutt(η−2) ⋅ r
′

2

(r1 ∥̄ r2)⇓c = ((η1 ↣ d1 ⋅ r
′
1) ∥̄ (stutt(η−2 ) ⋅ r

′
2))⇓c

[ by Definition 3.1.10 ]

= ((η+1 , η
−
1 ∪ η

−
2 ) ↣ d1 ⋅ (r

′
1 ∥̄ r

′
2↓d1))⇓c

[ by Definition 3.1.25 ]

= c ⋅ (r′1 ∥̄ r
′
2↓d1)⇓c⊗d1

[ by Inductive Hypothesis ]

= c ⋅ (r′1⇓c⊗d1 ∥̆ (r′2↓d1)⇓c⊗d1)

[ by Lemma 3.A.6 ]

= c ⋅ (r′1⇓c⊗d1 ∥̆ r
′
2⇓c⊗d1)

[ by Equation (3.A.1b) ]

= (c ⋅ r′1⇓c⊗d1) ∥̆ (c ⋅ r′2⇓c)

By Definition 3.1.25, r1⇓c ∥̆ r2⇓c = (c ⋅ r′1⇓c⊗d1) ∥̆ (c ⋅ r′2⇓c), thus r1⇓c ∥̆ r2⇓c = (r1 ∥̄ r2)⇓c.

r1 = stutt(η−1) ⋅ r
′

1 and r2 = stutt(η−2) ⋅ r
′

2

(r1 ∥̄ r2)⇓c = ((stutt(η−1 ) ⋅ r
′
1) ∥̄ (stutt(η−2 ) ⋅ r

′
2))⇓c

[ by Definition 3.1.10 ]

= (stutt(η−1 ∪ η
−
2 ) ⋅ (r

′
1 ∥̄ r

′
2))⇓c

[ by Definition 3.1.25 ]

= c ⋅ (r′1 ∥̄ r
′
2)⇓c

[ by Inductive Hypothesis ]

= c ⋅ (r′1⇓c ∥̆ r
′
2⇓c)

[ by Equation (3.A.1b) ]

= (c ⋅ r′1⇓c) ∥̆ (c ⋅ r′2⇓c)

By Definition 3.1.25, r1⇓c ∥̆ r2⇓c = (c ⋅ r′1⇓c) ∥̆ (c ⋅ r′2⇓c), thus r1⇓c ∥̆ r2⇓c = (r1 ∥̄ r2)⇓c.

Theorem 3.1.26. For each program P and each c ∈ C, prefix(PJP K⇓c) = BssJP Kc.

Proof.
Let d ∈ C and P = D.A with D ∈ DΠ

C and A ∈ AΠ
C, we proceed by structural induction on

A.

A = skip The proof in this case is straightforward.

prefix(AJskipKF JDK)⇓d = prefix({⊠})⇓d = {ε, d} = BssJD . skipKd

A = tell(c)

prefix((AJtell(c)KF JDK⇓d) = prefix((true,∅) ↣ c ⋅ ⊠)⇓d)

= prefix(d ⋅ (d⊗ c))

= BssJD . tell(c)Kd
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A = ∑n
i=1 ask(ci) →Ai We prove the two directions separately.

⊆ We show that, given a conditional trace r ∈ AJAKF JDK , it holds that ∀d ∈

C.prefix(r⇓d) ⊆ B
ssJD . AKd. We have to distinguish two cases.

r = (cj,∅) ↣ cj ⋅ rj↓cj with 1 ≤ j ≤ n By (3.1.7) it follows that rj ∈ AJAjKF JDK .
In case r⇓d is not defined (i.e., d ⊬ cj), prefix(r⇓d) = ∅ ⊆ BssJD .AKd. Oth-
erwise, if r⇓d is defined, we have that d ⊢ cj and (rj↓cj)⇓d⊗cj is defined too.
We distinguish two sub-cases.
d ≠ false In this case we have:

prefix(r⇓d)

= prefix({((cj ,∅) ↣ cj ⋅ rj↓cj)⇓d ∣1 ≤ j ≤ n, rj ∈ AJAjKF JDK})

[ by Definition 3.1.25 ]

= prefix({d ⋅ (rj↓cj)⇓d⊗cj ∣1 ≤ j ≤ n, rj ∈ AJAjKF JDK})

[ by Lemma 3.A.6 and since d ⊢ cj ]

= prefix({d ⋅ rj⇓d ∣1 ≤ j ≤ n, rj ∈ AJAjKF JDK})

[ by Equation (3.1.1) ]

= {ε, d} ∪ {d ⋅ s ∣1 ≤ j ≤ n, s ∈ prefix(AJAjKF JDK⇓d)}

[ by Inductive Hypothesis ]

⊆ {ε, d} ∪ {d ⋅ s ∣1 ≤ j ≤ n, s ∈ BssJD . AjKd}

The element ε directly belongs to BssJD . AKd. Since d ⊢ cj , also d
belongs to BssJD . AKd (at least one step is performed in the com-
putation). Finally, the set {d ⋅ s ∣1 ≤ j ≤ n, ∈ BssJD . AjKd} is also
contained in BssJD . AKd. In particular, following Rule R2, the agent

∑ni=1 ask(ci) → Ai (executed with a store d that entails one of the guards,
e.g. cj) behaves, in the next time instant, as the corresponding agent
Aj over the store (which is not modified in that step).

d = false By definition of ⇓ (3.1.25), we have that prefix(r⇓false) = {ε, false}
which corresponds to the set BssJD.AKfalse since the transition relation
→ is not defined for the configuration ⟨A, false⟩.

r = stutt({c1, . . . , cn}) ⋅ r
′

By (3.1.7), we have that r′ ∈ AJAKF JDK and for
all 1 ≤ j ≤ n, cj ≠ true. In case r⇓d is not defined (i.e., it exists 1 ≤ j ≤ n
such that d ⊢ cj), prefix(r⇓d) = ∅ ⊆ BssJD.AKd. Otherwise, if r⇓d is defined
then prefix(r⇓d) = {ε, d} ⊆ BssJD . AKd.

⊇ For each d ∈ C, it exists a conditional trace r ∈ AJAKF JDK such that prefix(r⇓d) ⊇
BssJD . AKd. There are three cases to be considered.

d does not satisfy any guard This means that for all 1 ≤ j ≤ n, d ⊬ cj ;
then, the small-step behavior is BssJD . AKd = {ε, d}. Thus, it exists a
conditional trace r ∈ AJAKF JDK such that r = stutt({c1, . . . , cn}) ⋅ r

′ with
r′ ∈ AJAKF JDK . Moreover, by Definition 3.1.25 and Definition 3.1.1, it
follows that prefix(r⇓d) = {ε, d} ⊇ BssJD . AKd.
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there exists cj such that d ⊢ cj and d ≠ false In this case, one of the con-
ditional traces computed by the semantics evaluation function A is r = (cj ,
∅) ↣ cj ⋅ rj↓cj with rj ∈ AJAjKF JDK . Then, we have:

prefix(r⇓d) =prefix(((cj ,∅) ↣ cj ⋅ rj↓cj)⇓d)

[ by Definition 3.1.25 ]

=prefix({d ⋅ (rj↓cj)⇓d⊗cj ∣ rj ∈ AJAjKF JDK})

[ by Lemma 3.A.6 and since d ⊢ cj ]

=prefix({d ⋅ rj⇓d ∣ rj⇓d ∈ AJAjKF JDK⇓d})

[ by Equation (3.1.1) ]

={ε, d} ∪ {d ⋅ s ∣ s ∈ prefix(AJAjKF JDK⇓d)}

[ by Inductive Hypothesis ]

⊇{ε, d} ∪ {d ⋅ s ∣ s ∈ BssJD . AjKd}
[ by Rule R2 ]

⊇BssJD . AKd

d = false In this case we have:

prefix(r⇓false) =prefix(((cj ,∅) ↣ cj ⋅ rj↓cj)⇓false)

[ by Definition 3.1.25 ]

={ε, false}

[ by Definition 3.1.1 ]

⊇BssJD . AKfalse

Therefore, we can conclude that prefix(AJAKF JDK⇓d) = B
ssJD . AKd.

A = now c thenA1 elseA2 We prove the two directions independently. We abbreviate
the conditional agent and call it A (A ∶= now c then A1 else A2).

⊆ We show that ∀d ∈ C. prefix(AJnow c then A1 else A2KF JDK⇓d) ⊆ B
ssJD . now c

then A1 else A2Kd. There are seven possible cases, one for each type of trace r
in (3.1.8).

r = (c,∅) ↣ c ⋅ ⊠ By (3.1.8) we have that ⊠ ∈ AJA1KF JDK , which means, by
Definition 3.1.16, that A1 = skip. We consider now the three possible cases:
d ⊢ c and d ≠ false It is straightforward that prefix(r⇓d) = prefix(d ⋅d) =

{ε, d, d ⋅ d}. On the behavioral part, we know from Rule R4 that the
observable of A is the set of all prefixes of d ⋅ d, so we can conclude
prefix(r⇓d) ⊆ B

ssJD . AKd.
d = false The small-step behavior is BssJD . AKfalse = {ε, false}. Since

false ⊢ c it is straightforward that prefix(r⇓false) = {ε, false} = BssJD .
AKfalse .

d ⊬ c Then the application of ⇓d to the agent semantics does not compute
any behavioral timed trace. Therefore, prefix(r⇓d) = ∅ ⊆ BssJD . AKd.
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r = (η+ ⊗ c,η−) ↣ a⊗ c ⋅ r′↓c From (3.1.8) it follows that (η+, η−) ↣ a ⋅ r′ ∈
AJA1KF JDK , d being compatible with all the conditions occurring in r′,
a⊗ c ≠ false and ∀h− ∈ η−. η+ ⊗ c ⊬ h−.
In case r⇓d is not defined (i.e., d⊯ (η+⊗ c, η−) or when d is not compatible
with some condition occurring in r′), we have that prefix(r⇓d) = ∅ which
is directly included in BssJD . AKd.
Otherwise, if r⇓d is defined, it follows that d ⊫ (η+ ⊗ c, η−). This implies
that d ⊢ c since c belongs to the positive condition. Under these conditions,
we have:

prefix(r⇓d) =

= prefix({((η+ ⊗ c, η−) ↣ a⊗ c ⋅ r′↓c)⇓d ∣ (η
+, η−) ↣ a ⋅ r′ ∈ AJA1KF JDK})

[ by Definition 3.1.25 ]

= prefix({d ⋅ (r′↓c)⇓d⊗a⊗c ∣d ⋅ r
′⇓d⊗a ∈ AJA1KF JDK⇓d})

[ by Lemma 3.A.6 since d ⊢ c ]

= prefix({d ⋅ r′⇓d⊗a ∣d ⋅ r
′⇓d⊗a ∈ AJA1KF JDK⇓d})

= prefix(AJA1KF JDK⇓d)

[ by Inductive Hypothesis ]

⊆ BssJD . A1Kd
[ by Rule R3 ]

⊆ BssJD . AKd

r = (η+ ⊗ c,η−) ↣ false ⋅ ⊠ We consider two possible cases:
d⊫ (η+ ⊗ c,η−) This implies that d ⊢ c. Under these conditions, we get:

prefix(r⇓d)

= prefix(((η+ ⊗ c, η−) ↣ false ⋅ ⊠)⇓d)

[ by Definition 3.1.25 ]

= {ε, false}

[ by Definition 3.1.1 ]

⊆ BssJD . AKd

d⊯ (η+ ⊗ c,η−) In this case prefix(r⇓d) = ∅ which is directly included in
BssJD . AKd.

r = (c,η−) ↣ c ⋅ r′ In case r⇓d is not defined (i.e., d ⊯ (c, η−) or also when
d is not compatible with some condition occurring in r′) we have that
prefix(r⇓d) = ∅ ⊆ BssJD . AKd. Otherwise, by (3.1.8), stutt(η−) ⋅ r′ ∈

AJA1KF JDK and d is compatible with all the conditions occurring in r′.
We have to consider two sub-cases.
d ≠ false In this case we have:

prefix(r⇓d) =

= prefix({((c, η−) ↣ c ⋅ r′)⇓d ∣ stutt(η−) ⋅ r′ ∈ AJA1KF JDK})

[ by Definition 3.1.25 ]
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= prefix({d ⋅ r′⇓d⊗c ∣ stutt(η−) ⋅ r′ ∈ AJA1KF JDK})

[ since d ⊢ c ]

= prefix({d ⋅ r′⇓d ∣ stutt(η−) ⋅ r′ ∈ AJA1KF JDK})

[ by Definition 3.1.16 ]

= prefix({d ⋅ r′⇓d ∣ r′ ∈ AJA1KF JDK})

[ by Equation (3.1.1) ]

= {ε, d} ∪ {d ⋅ s ∣ s ∈ prefix(AJA1KF JDK⇓d)}

[ by Inductive Hypothesis ]

⊆ {ε, d} ∪ {d ⋅ s ∣ s ∈ BssJD . A1Kd}
[ by Rule R4 ]

⊆ BssJD . AKd

The fourth step follows from the definition of the semantics A (Defini-
tion 3.1.16). The construct stutt is introduced only by an ask agent.
Thus, we know that A1 is an ask agent. The Equation (3.1.8), states
that stutt(η−) is always followed by a conditional trace which belongs
to the semantics of the ask , which can be reduced to say that r′ belongs
to AJA1KF JDK .

d = false In this case we have that prefix(r⇓false) = {ε, false} which cor-
responds to the behavior BssJD .AKfalse since the transition relation →
is not defined for the agent A starting with store false.

r = (true,{c}) ↣ true ⋅ ⊠ By (3.1.8), ⊠ ∈ AJA2KI . By Definition 3.1.16, it
follows that A2 is a skip agent. We consider two sub-cases.
d ⊬ c It is straightforward that prefix(r⇓d) = prefix(d ⋅ d) = {ε, d, d ⋅ d}.

From Rule R6, we know that the observable of the agent A consists of
the set of all prefixes of d ⋅ d. Therefore, prefix(r⇓d) ⊆ B

ssJD . AKd.
d ⊢ c In this case r⇓d does not compute any trace because d does not

satisfy the condition, thus prefix(r⇓d) = ∅ ⊆ BssJD . AKd.
r = (η+, η− ∪ {c}) ↣ c′ ⋅ r′ In case r⇓d is not defined (i.e., d ⊯ (η+, η− ∪ {c})),

prefix(r⇓d) = ∅, which is directly contained in BssJD . AKd.
Otherwise, if r⇓d it follows that (η+, η−) ↣ c′ ⋅ r′ ∈ AJA2KF JDK and c′ ⊬ c.
If d ⊫ (η+, η− ∪ {c}), we know also that d ⊬ c. Under these conditions, we
have:

prefix({r⇓d)

= prefix({((η+, η− ∪ {c}) ↣ c′ ⋅ r′)⇓d ∣ (η
+, η−) ↣ c′ ⋅ r′ ∈ AJA2KF JDK})

[ by Definition 3.1.25 ]

= prefix({d ⋅ r′⇓d⊗c′ ∣d ⋅ r
′⇓d⊗c′ ∈ AJA2KF JDK⇓d})

= prefix(AJA2KF JDK⇓d)

[ by Inductive Hypothesis ]

⊆ BssJD . A2Kd
[ by Rule R5 ]
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⊆ BssJD . AKd

r = (true, η− ∪ {c}) ↣ true ⋅ r′ By (3.1.8), we have that stutt(η−)⋅r′ ∈ AJA2KF JDK .
In case r⇓d is not defined (i.e., d⊯ (true, η−∪{c})), prefix(r⇓d) = ∅, which
is directly contained in BssJD . AKd.
Otherwise, if r⇓d is defined it follows that d ⊫ (true, η− ∪ {c}). Then, we
have:

prefix(r⇓d)

= prefix({((true, η− ∪ {c}) ↣ true ⋅ r′)⇓d ∣ stutt(η−) ⋅ r′ ∈ AJA2KF JDK})

[ by Definition 3.1.25 ]

= prefix({d ⋅ r′⇓d ∣ stutt(η−) ⋅ r′ ∈ AJA2KF JDK})

[ by Definition 3.1.16 ]

= prefix({d ⋅ r′⇓d ∣ r
′ ∈ AJA2KF JDK})

[ by Equation (3.1.1) ]

= {ε, d} ∪ {d ⋅ s ∣ s ∈ prefix(AJA2KF JDK⇓d)}

[ by Inductive Hypothesis ]

⊆ {ε, d} ∪ {d ⋅ s ∣ s ∈ BssJD . A2Kd}
[ by Rule R6 ]

⊆ BssJD . AKd

The third step can be done since each construct stutt(η−) is introduced by
a choice agent, and Equation (3.1.7) states that it is always followed by a
conditional trace r′ belonging recursively to the semantics of A2.

⊇ We have four cases, one for each rule defining the operational semantics for the
conditional agent in Figure 2.2.

Rule R3 Let us recall the conditions to apply Rule R3: it must occur ⟨A1, d⟩ →
⟨A′

1, d
′⟩ and d ⊢ c. In this case, we have that BssJD.AKd = BssJD.A1Kd. By

inductive hypothesis, we know that prefix(AJA1KF JDK⇓d) ⊇ BssJD . A1Kd,
thus also prefix(AJA1KF JDK⇓d) ⊇ B

ssJD .AKd. Next, we prove the inclusion
prefix(AJAKF JDK⇓d) ⊇ prefix(AJA1KF JDK)⇓d. We proceed by induction on
the structure of a generic r1 ∈ AJA1KF JDK in order to find r ∈ AJAKF JDK
such that prefix(r1⇓d) ⊆ prefix(r⇓d).
r1 = ⊠ By (3.1.8), r = (c,∅) ↣ c ⋅ ⊠ ∈ AJAKF JDK . We know that ⊠⇓d = d

and r⇓d = d ⋅ (d⊗ c) = d ⋅d, since d ⊢ c. It is easy to see that the prefixes
of d are all included in the prefixes of d ⋅ d.

r1 = (η
+, η−) ↣ c′ ⋅ r′ By definition, r = (η+⊗c, η−) ↣ c′⊗c⋅r′↓c ∈ AJAKF JDK .

If d⊫ (η+, η−), then r1⇓d = d ⋅ r
′⇓d⊗c′ and, since d ⊢ c by the initial as-

sumptions, r⇓d = d ⋅r
′⇓d⊗c′⊗c = d ⋅r

′⇓d⊗c′ = r1⇓d, thus the inclusion of the
prefixes directly holds. Otherwise, if d ⊯ (η+, η−), then the operator
⇓d is undefined in both cases.

r1 = stutt(η−) ⋅ r′ By definition, r = (c, η−) ↣ c ⋅ r′↓c ∈ AJAKF JDK . If for
all h− ∈ η−, d ⊬ h−, then r1⇓d = d and it holds that its prefixes are all
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included in the prefixes of r⇓d = d ⋅ r⇓d⊗c. Otherwise, if it exists h− ∈ η−

such that d ⊢ h−, then the ⇓d operator is undefined in both cases.
Rule R4 The conditions to apply this rule are ⟨A1, d⟩ /→, d ⊢ c and d ≠ false,

in which case the small-step behavior is defined as BssJD.AKd = prefix(d⋅d).
There are two cases in which it may happen that ⟨A1, d⟩ /→:
A1 = skip By (3.1.2), ⊠ ∈ AJA1KF JDK and r = (c,∅) ↣ c ⋅ ⊠ ∈ AJAKF JDK .

We now have that r⇓d = d ⋅ (d⊗ c) = d ⋅ d, whose prefixes coincide with
BssJD . AKd.

A1 = ∑
n
i=1 ask(ci) →Bi and ∀1 ≤ i ≤ n ⊬ ci By (3.1.7), stutt({c1, . . . , cn})⋅

r′ ∈ AJA1KF JDK and, as a consequence, r = (c,{c1, . . . , cn}) ↣ c ⋅ r′

belongs to AJAKF JDK . Now we compute r⇓d and we get the trace
d ⋅ r′⇓d⊗c = d ⋅ r

′⇓d. By definition of the evaluation function A, r′ is dif-
ferent from the empty conditional trace ε (by (3.1.7) a stutt construct is
always followed by another conditional state). Therefore, r′⇓d = d ⋅ d ⋅ s
for some behavioral trace s. As a consequence, the behavior of the
agent BssJD.AKd = d ⋅d is included in the set of prefixes of r⇓d = d ⋅d ⋅s.

In case d = false we are not allowed to apply any rule in Figure 2.2, so the
small-step behavior is BssJD.AKfalse = {ε, false}. In this case, A1 = skip since
false is strong enough to entail any guard of a generic agent ∑ni=1 ask(ci) →
Bi. As explained above, ⊠ ∈ AJA1KF JDK and r = (c,∅) ↣ c ⋅ ⊠ ∈ AJAKF JDK ,
thus r⇓false = false, and it is easy to note that BssJD.AKfalse ∈ prefix(false).

Rule R5 This case is analogous to the case for Rule R3 but, instead of exe-
cuting the then branch (A1), the else branch of the conditional agent (A2)
is taken, under the condition that d ⊬ c. More specifically, the conditions
imposed for the application of the rule are ⟨A2, d⟩ → ⟨A′

2, d
′⟩ and d ⊬ c, in

which case BssJD . AKd = BssJD . A2Kd. By inductive hypothesis, we know
that prefix(AJA2KF JDK⇓d) ⊇ B

ssJD.A1Kd, thus also prefix(AJA2KF JDK⇓d) ⊇

BssJD . AKd. In the following, we prove that prefix(AJAKF JDK⇓d) ⊇ prefix(
AJA2KF JDK⇓d) when d ⊬ c. We proceed by induction on the structure of a
generic r2 ∈ AJA2KF JDK in order to find a conditional trace r ∈ AJAKF JDK
such that prefix(r2⇓d) ⊆ prefix(r⇓d).
r2 = ⊠ In this case, r = (true,{c}) ↣ true ⋅ ⊠ belongs to AJAKF JDK . We

have ⊠⇓d = d, whose prefixes are included in those of r⇓d = d ⋅ d.

r2 = (η
+, η−) ↣ c′ ⋅ r′ In this case, r = (η+, η− ∪ {c}) ↣ c′ ⋅ r′ ∈ AJAKF JDK .

Let us now assume that d ⊫ (η+, η−); then, r2⇓d = d ⋅ r′⇓d⊗c′ . In
addition, since by the initial assumptions d ⊬ c, r⇓d = d ⋅ r

′⇓d⊗c′ , the
inclusion of the prefixes directly holds. Otherwise, if d⊯ (η+, η−), then
the operator ⇓d is undefined in both cases.

r2 = stutt(η−) ⋅ r′ By definition, r = (true, η−∪{c}) ↣ true ⋅r′ ∈ AJAKF JDK .
Assume that for all h− ∈ η−, d ⊬ h−. Then, r2⇓d = d, and its prefixes
are all included in the prefixes of r⇓d = d ⋅ r

′⇓d. Otherwise, if it exists
h− ∈ η− such that d ⊢ h−, then the ⇓d operator is undefined in both
cases.

Rule R6 This case is analogous to the case for Rule R4. Now, the conditions
to apply the rule are that ⟨A2, d⟩ /→ and d ⊬ c. In this case, the small-step
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behavior is BssJD .AKd = prefix(d ⋅ d). There are two cases in which it may
happen that ⟨A2, d⟩ /→:
A2 = skip By (3.1.2), ⊠ ∈ AJA2KF JDK and r = (true,{c}) ↣ true ⋅ ⊠ ∈

AJAKF JDK . Then, since d ⊬ c, we have that r⇓d = d ⋅ d, which coincides
with BssJD . AKd.

A2 = ∑
n
i=1 ask(ci) →Bi and ∀1 ≤ i ≤ n ⊬ ci By (3.1.7), stutt({c1, . . . , cn})⋅

r′ ∈ AJA2KF JDK and, as a consequence, r = (c,{c1, . . . , cn}) ↣ c ⋅ r′ be-
longs to AJAKF JDK . Now, we compute r⇓d and we get as result the
trace d ⋅ r′⇓d. Since, by definition of the semantics evaluation function
A, a stutt is always followed by another conditional tuple, then r′ is
different from the empty trace. Therefore, r′⇓d = d ⋅ s for some trace
s. As a consequence, the behavior of the agent BssJD . AKd = d ⋅ d is
included in the set of prefixes of r⇓d = d ⋅ d ⋅ s.

A =A1 ∥A2 We prove the two directions separately.

⊆ We distinguish five different cases. Let r ∶= r1 ∥̄ r2 ∈ AJA1 ∥ A2KF JDK such that
r1 ∈ AJA1KF JDK and r2 ∈ AJA2KF JDK .

r = r1 By Definition 3.1.10, r1 is a generic conditional trace and r2 = ⊠ (or r2 =

ε). In other words, r2 is associated to an agent that adds no information.
We have:

prefix((r1 ∥̄ r2)⇓d) =prefix(r1⇓d)

=AJA1KF JDK⇓d

[ by Inductive Hypothesis ]

⊆BssJD . A1Kd
=BssJD . A1 ∥ A2Kd

Since A2 does not modify the store, we can conclude that the two behaviors
BssJD . A1Kd and BssJD . A1 ∥ A2Kd coincide.

r = stutt(η−1 ∪ η
−

2) ⋅ r
′

In case d ⊬ h− ∀h− ∈ (η−∪δ−), we have that prefix(r⇓d) =
prefix(d) = {ε, d} ⊆ BssJD . A1 ∥ A2Kd
Otherwise, r⇓d is not defined, thus, the set prefix(r⇓d) is empty and the
inclusion directly holds.

r = (η ⊗ δ) ↣ c1 ⊗ c2 ⋅ (r
′

1↓c2 ∥̄ r
′

2↓c1) By Definition 3.1.10, r1 = η ↣ c1 ⋅ r
′
1 ∈

AJA1KF JDK , r2 = η ↣ c2 ⋅ r
′
2 ∈ AJA2KF JDK and (c1 ⊗ c2) ≠ false. Let us

distinguish three sub-cases.

d⊫ (η ⊗ δ) and d ≠ false Due to the form of r1 and r2, we know that
there exist two agents A′

1 and A′
2 such that ⟨A1, d⟩ → ⟨A′

1, d ⊗ c1⟩ and
⟨A2, d⟩ → ⟨A′

2, d⊗ c2⟩, respectively. Then,

prefix(r⇓d) =

= prefix({d ⋅ (r′1↓c2 ∥̄ r
′
2↓c1)⇓d⊗c1⊗c2 ∣ r′1 ∈ AJA′

1KF JDK , r
′
2 ∈ AJA′

2KF JDK})

[ c1 and c2 are already in the stores of r1 and r2, respectively ]
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= prefix({d ⋅ (r′1↓c1⊗c2 ∥̄ r
′
2↓c1⊗c2)⇓d⊗c1⊗c2 ∣ r′1 ∈ AJA′

1KF JDK

and r′2 ∈ AJA′
2KF JDK})

[ by Lemma 3.A.3 ]

= prefix({d ⋅ (r′1 ∥̄ r
′
2)↓c1⊗c2⇓d⊗c1⊗c2 ∣ r′1 ∈ AJA′

1KF JDK

and r′2 ∈ AJA′
2KF JDK})

[ by Lemma 3.A.6 ]

= prefix({d ⋅ (r′1 ∥̄ r
′
2)⇓d⊗c1⊗c2 ∣ r′1 ∈ AJA′

1KF JDK

and r′2 ∈ AJA′
2KF JDK})

[ by Lemma 3.A.8 ]

= prefix({d ⋅ (r′1⇓d⊗c1⊗c2 ∥̆ r
′
2⇓d⊗c1⊗c2) ∣ r′1 ∈ AJA′

1KF JDK

and r′2 ∈ AJA′
2KF JDK})

[ by Equation (3.1.1) ]

= {ε, d} ∪ {d ⋅ (s′1 ∥̆ s
′
2) ∣ s′1 ∈ prefix(AJA′

1KF JDK⇓d⊗c1⊗c2),

s′2 ∈ prefix(AJA′
2KF JDK⇓d⊗c1⊗c2)}

[ by Inductive Hypothesis ]

⊆ {ε, d} ∪ {d ⋅ (s′1 ∥̆ s
′
2) ∣ s′1 ∈ B

ssJD . A′
1Kd⊗c1⊗c2 , s

′
2 ∈ B

ssJD . A′
2Kd⊗c1⊗c2}

[ by Definition 3.A.7 and by Definition 3.1.1 ]

⊆ {ε, d} ∪ {d ⋅ s ∣ s ∈ BssJD . A′
1 ∥ A

′
2Kd⊗c1⊗c2}

[ by Rule R7 ]

⊆ BssJD . A1 ∥ A2Kd

d = false We have that ⟨A1, false⟩ /→ and ⟨A2, false⟩ /→, thus BssJD.A1 ∥

A2Kfalse = {ε, false}. Since d ⊫ (η ⊗ δ), we have that prefix(r⇓false) =

{ε, false}, which corresponds to the small-step behavior BssJD . A1 ∥

A2Kfalse .

d⊯ (η ⊗ δ) In this case the set prefix(r⇓d) is empty since ⇓d is not defined
under these conditions, thus it is directly included in BssJD.A1 ∥ A2Kd.

r = (η ⊗ δ) ↣ false ⋅ ⊠ By Definition 3.1.10 we have that r1 = η ↣ c1 ⋅ r
′
1,

r2 = δ ↣ c2 ⋅ r
′
2 and c1 ⊗ c2 = false. We have to consider three cases:

d⊫ (η ⊗ δ) and d ≠ false

prefix(r⇓d) =prefix(d ⋅ c1 ⊗ c2)

=prefix(d ⋅ false)

={d ⋅ s ∣ s ∈ BssJD . A′
1 ∥ A

′
2Kfalse}

[ by Rule R7 ]

⊆BssJD . A1 ∥ A2Kd

In fact, also the second component of the behavior is the store false.
This case represents the situation in which the contribution of the two
conditional traces results in an inconsistent conditional trace.
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d = false We have that ⟨A1, false⟩ /→ and ⟨A2, false⟩ /→, thus BssJD.A1 ∥

A2Kfalse = {ε, false}. Since d ⊫ (η ⊗ δ), we have that prefix(r⇓false) =

{ε, false}, which corresponds to the small-step behavior BssJD . A1 ∥

A2Kfalse .

d⊯ (η ⊗ δ) In this case, r⇓d is undefined, thus we have that ∅ ⊆ BssJD .
A1 ∥ A2Kd.

r = (η+, η− ∪ δ−) ↣ c1 ⋅ (r
′

1 ∥̄ r
′

2↓c1) By Definition 3.1.10, r1 = η ↣ c1 ⋅ r
′
1 ∈

AJA1KF JDK , r2 = stutt(δ−) ⋅r′2 ∈ AJA2KF JDK with r′2 that recursively belongs
to AJA2KF JDK and for all h− ∈ δ−, η+ ⊬ h−. Let us distinguish three sub-
cases.
d⊫ (η+, η− ∪ δ−) . Then,

prefix(r⇓d)

= prefix({d ⋅ (r′1 ∥̄ r
′
2↓c1)⇓d⊗c1 ∣ r′1 ∈ AJA′

1KF JDK , r
′
2 ∈ AJA2KF JDK})

[ c1 is already contained in the stores of r1 ]

= prefix({d ⋅ (r′1 ∥̄ r
′
2)↓c1⇓d⊗c1 ∣ r′1 ∈ AJA′

1KF JDK , r
′
2 ∈ AJA2KF JDK})

[ by Lemma 3.A.6 ]

= prefix({d ⋅ (r′1 ∥̄ r
′
2)⇓d⊗c1 ∣ r′1 ∈ AJA′

1KF JDK , r
′
2 ∈ AJA2KF JDK})

[ by Lemma 3.A.8 ]

= prefix({d ⋅ (r′1⇓d⊗c1 ∥̆ r
′
2⇓d⊗c1) ∣ r′1 ∈ AJA′

1KF JDK , r
′
2 ∈ AJA2KF JDK})

[ by Equation (3.1.1) ]

= {ε, d} ∪ {d ⋅ (s′1 ∥̆ s
′
2) ∣ s′1 ∈ prefix(AJA′

1KF JDK⇓d⊗c1),

s′2 ∈ prefix(AJA2KF JDK⇓d⊗c1)}

[ by Inductive Hypothesis ]

⊆ {ε, d} ∪ {d ⋅ (s′1 ∥̆ s
′
2) ∣ s′1 ∈ B

ssJD . A′
1Kd⊗c1 , s

′
2 ∈ B

ssJD . A2Kd⊗c1}
[ by Definition 3.A.7 and by Definition 3.1.1 ]

⊆ {ε, d} ∪ {d ⋅ s ∣ s ∈ BssJD . A′
1 ∥ A2Kd⊗c1}

[ by Rule R8 ]

⊆ BssJD . A1 ∥ A2Kd

d = false We have that ⟨A1, false⟩ /→ and ⟨A2, false⟩ /→, thus BssJD.A1 ∥

A2Kfalse = {ε, false}. Since d ⊫ (η ⊗ δ), we have that prefix(r⇓false) =

{ε, false}, which corresponds to the small-step behavior BssJD . A1 ∥

A2Kfalse .

d⊯ (η+, η− ∪ δ−) In this case, we have that prefix(r⇓d) = ∅ ⊆ BssJD.A1 ∥

A2Kd.

⊇ We show that if s ∈ BssJD . A1 ∥ A2Kd, then s ∈ prefix(AJA1 ∥ A2KF JDK⇓d), i.e.,
we can find a conditional trace r ∈ AJA1 ∥ A2KF JDK such that s ∈ prefix(r⇓d).
We have four possible cases, depending on the rules defining the operational
semantics for the agent.
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1. If ⟨A1, d⟩ → ⟨A′
1, d

′
1⟩ and ⟨A2, d⟩ → ⟨A′

2, d
′
2⟩, the behavior of the parallel

composition is BssJD . A1 ∥ A2Kd = {d ⋅ s′ ∣ s′ ∈ BssJD . A′
1 ∥ A

′
2Kd′1⊗d′2}. Let

s be an element of that set. By inductive hypothesis, we know that there
exist r1 ∈ AJA1KF JDK and r2 ∈ AJA2KF JDK such that d ⋅ s′1 ∈ prefix(r1⇓d)

and d ⋅ s′2 ∈ prefix(r2⇓d), with s′1 ∈ BssJD . A′
1Kd and s′2 ∈ BssJD . A′

2Kd.
Now, consider r = r1 ∥̄ r2; this conditional trace belongs to AJA1 ∥ A2KF JDK

whenever r1 and r2 are compatible via parallel composition (i.e., r1 ∥̄ r2 is
a valid conditional trace). We show that s ∈ prefix((r1 ∥̄ r2)⇓d).

prefix((r1 ∥̄ r2)⇓d)

[ by Lemma 3.A.8 ]

= prefix(r1⇓d ∥̆ r2⇓d)

[ by Definition 3.1.25 ]

= {ε, d} ∪ {(d ⋅ s′1) ∥̆ (d ⋅ s′2) ∣ s
′
1 ∈ B

ssJD . A′
1Kd′1 and s′2 ∈ B

ssJD . A′
2Kd′2}

[ by Definition 3.A.7 ]

= {ε, d} ∪ {d ⋅ s′1 ∥̆ s
′
2 ∣ s

′
1 ∈ B

ssJD . A′
1Kd′1 and s′2 ∈ B

ssJD . A′
2Kd′2}

[ by Definition 3.A.7 and by Definition 3.1.1 ]

= {ε, d} ∪ {d ⋅ s′ ∣ s′ ∈ BssJD . A′
1Kd′1 ∥̆ B

ssJD . A′
2Kd′2}

[ by Rule R7 and Equation (3.A.1) ]

= {ε, d} ∪ {d ⋅ s′ ∣ s′ ∈ BssJD . A′
1 ∥ A

′
2Kd′1⊗d′2}

It follows directly that s ∈ prefix((r1 ∥̄ r2)⇓d).

2. If ⟨A1, d⟩ → ⟨A′
1, d

′
1⟩ and ⟨A2, d⟩ /→, then Rule R8 is applied and we

have that BssJD . A1 ∥ A2Kd = {d ⋅ s′ ∣ s′ ∈ BssJD . A′
1 ∥ A2Kd′1}. Let s be

an element of that set. By inductive hypothesis, we know that it exists
r1 ∈ AJA1KF JDK such that d ⋅ s′1 ∈ prefix(r1⇓d) with s′1 ∈ BssJD . A′

1Kd.
Moreover, it exists r2 ∈ AJA2KF JDK such that r2⇓d = d. We distinguish two
cases (corresponding to the two agents that can make the agent A2 not to
proceed) in order to prove that s ∈ prefix((r1 ∥̄ r2)⇓d).
A2 = skip In this case, the behavior of the parallel composition is that

of A1 since A2 makes no contribution to the computation. Then,
(r1 ∥̄ ⊠)⇓d = d ⋅ s′ with s′ ∈ BssJD . A′

1Kd = BssJD . A′
1 ∥ A2Kd, thus

s ∈ prefix((r1 ∥̄ ⊠)⇓d).

A2 = ∑
n
i=1 ask(ci) →Bi Consider r2 = stutt({c1, . . . , cn}) ⋅ r

′
2 with r′2 ∈

AJA1KF JDK . We can assume that d ⊬ ci for all ci, otherwise, the agent
A2 would proceed.

prefix((r1 ∥̄ stutt(c1, . . . , cn) ⋅ r
′
2)⇓d) =

= prefix({d ⋅ (r′1 ∥̄ r
′
2)⇓d′1 ∣ r

′
1 ∈ AJA1KF JDK and r′2 ∈ AJA2KF JDK})

[ by Lemma 3.A.8 ]

= prefix({d ⋅ (r′1⇓d′1 ∥̆ r
′
2⇓d′1) ∣ r

′
1 ∈ AJA1KF JDK and r′2 ∈ AJA2KF JDK})

[ by Equation (3.1.1) ]
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= {ε, d} ∪ {d ⋅ (s′1 ∥̆ s
′
2) ∣ s′1 ∈ prefix(AJA1KF JDK⇓d′1) and

s′2 ∈ prefix(AJA2KF JDK⇓d′1)}

[ by Inductive Hypothesis ]

= {ε, d} ∪ {d ⋅ (s′1 ∥̆ s
′
2) ∣ s

′
1 ∈ B

ssJD . A′
1Kd′1 and s′2 ∈ B

ssJD . A2Kd′1}

[ by Definition 3.A.7 and by Definition 3.1.1 ]

= {ε, d} ∪ {d ⋅ s′ ∣ s′ ∈ BssJD . A′
1Kd′1 ∥̆ B

ssJD . A2Kd′1}

[ by Rule R7, Rule R8 and Equation (3.A.1) ]

= {ε, d} ∪ {d ⋅ s′ ∣ s′ ∈ BssJD . A′
1 ∥ A2Kd′1}

It follows directly that s ∈ prefix((r1 ∥̄ r2)⇓d).

3. If ⟨A1, d⟩ /→ and ⟨A2, d⟩ → ⟨A′
2, d

′
2⟩, then the situation is symmetric to the

previous case, thus BssJD . A1 ∥ A2Kd ⊆ prefix(AJA1 ∥ A2KF JDK⇓d).

4. Finally, if ⟨A1, d⟩ /→ and ⟨A2, d⟩ /→, then we can reason similarly to
Point 2, considering, for both A1 and A2, the two cases in which they
cannot proceed. We can conclude that BssJD . A1 ∥ A2Kd = {ε, d} ⊆

prefix(AJA1 ∥ A2KF JDK⇓d).

A = ∃xA1 We prove the two directions independently.

⊆ We show that: prefix(AJ∃xA1KF JDK⇓d) ⊆ BssJD . ∃xA1Kd. Let r = ∃̄x r1 such
that r1 ∈ AJA1KF JDK and r1 is x-self-sufficient. We show that the prefixes of
(∃̄x r1)⇓d are included in the behavior BssJD . ∃xA1Kd by structural induction
on r1:
r1 = ε The statement directly holds.
r1 = ⊠ Then, ⊠⇓d = d, which belongs to BssJD . ∃xA1Kd.
r1 = η ↣ l ⋅ r

′

1 By Definition 3.1.16, we have that r′1 ∈ AJA′
1KF JDK and, by

inductive hypothesis, there exists a transition ⟨A1, d⟩ → ⟨A′
1, d

′⟩.
Since r1 is x-self-sufficient, also r′1 is x-self-sufficient. Now, we have three
cases.
d⊫ ∃x η and d ≠ false

prefix(r⇓d)

= prefix({∃̄x(η ↣ l ⋅ r′1)⇓d ∣ r
′
1 ∈ AJA′

1KF JDK and r′1 x-self-sufficient})

[ by Definition 3.1.25 ]

= prefix({d ⋅ (∃̄x r
′
1)⇓d⊗∃x l ∣ r

′
1 ∈ AJA′

1KF JDK and r′1 x-self-sufficient})

[ r′1 ∈ AJA′
1KF JDK and r′1 x-self-sufficient ]

= prefix({d ⋅ s ∣ s ∈ (AJ∃xA′
1KF JDK)⇓d⊗∃x l})

[ by Equation (3.1.1) ]

= {ε, d} ∪ {d ⋅ s ∣ s ∈ prefix(AJ∃xA′
1KF JDK⇓d⊗∃x l)}

[ by Inductive Hypothesis ]

⊆ {ε, d} ∪ {d ⋅ s ∣ s ∈ BssJD . ∃xA′
1Kd⊗∃x l}

[ by Rule R9 ]
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⊆ BssJD . ∃xA1Kd

d = false We have that ⟨∃xA1, false⟩ /→, thus BssJD.∃xA1Kfalse = {ε, false}.
On the other hand, since d ⊫ ∃x η, we have that prefix(r⇓false) =

{ε, false} which corresponds to the small-step behavior BssJD.∃xA1Kfalse .

d⊯ ∃x η Then, the operator ⇓d is undefined for the conditional trace, thus
prefix(r⇓d) = ∅ ⊆ BssJD . ∃xA1Kd.

r1 = stutt({c1, . . . , cn}) ⋅ r
′

1 By Definition 3.1.16, r′1 ∈ AJ∑ii=1 ask(ni) → BiKF JDK .
If it exists no index 1 ≤ j ≤ n such that d ⊢ cj , then this implies that
d ⊢ ∃x cj . In such case, we have

prefix(r⇓d) = prefix(∃̄x(stutt({c1, . . . , cn}) ⋅ r
′
1)⇓d)

= prefix(stutt({∃x c1, . . . ,∃x cn}) ⋅ ∃̄x r
′
1⇓d)

[ by Definition 3.1.25 ]

= d ⊆ BssJD . ∃xA1Kd

Otherwise, if it exists an index j such that d ⊢ cj , then r⇓d is undefined,
thus prefix(r⇓d) = ∅ ⊆ BssJD . ∃xA1Kd.

⊇ From Rule R9, we know that, if d ≠ false, then BssJD.A1Kl⊗∃x d = l
′ ⋅BssJD.A′

1Kd,
where l and l′ are local stores. Moreover, l = true because it is the initial (lo-
cal) store for A1. In the following, we show that d ⋅ BssJD . ∃xA′

1Kd⊗∃x l ∈
AJ∃xA1KF JDK⇓d, i.e., it exists a trace r ∈ AJ∃xA1KF JDK such that r⇓d =

d ⋅ s with s ∈ BssJD . ∃xA′
1Kd⊗∃x l. By inductive hypothesis, BssJD . A1K∃x d ⊆

prefix(AJA1KF JDK⇓∃x d), and by Rule R9, it holds that there exists r1 ∈ AJA1KF JDK
such that r1⇓∃x d = ∃x d ⋅ B

ssJD . ∃xA′
1Kl′ .

Now, r1 is x-self-sufficient since the only external information is provided by

∃x d, which in fact does not contain information about x. Moreover, r1 is of
the form η ↣ l′ ⋅ r′1 with r′1 ∈ AJA′

1KF JDK . Therefore, it exists r ∈ AJ∃xA1KF JDK
such that r = ∃̄x r1. Then,

r⇓d = (∃̄x η ↣ l′ ⋅ r′1)⇓d

= (∃x η ↣ ∃x l
′ ⋅ ∃̄x r

′
1)⇓d

[ by Definition 3.1.25 ]

= d ⋅ (∃̄x r
′
1)⇓∃x l′⊗d

[ by Definition 3.1.25 ]

= d ⋅ s with s ∈ AJ∃xA′
1KF JDK⇓∃x l′⊗d

[ by Inductive Hypothesis ]

= d ⋅ s with s ∈ BssJD . ∃xA′
1K∃x l′⊗d

If d = false, then we have that prefix(r⇓false) = {ε, false}, which corresponds to
the small-step behavior BssJD.∃xA1Kfalse since the transition relation → is not
defined for ⟨∃xA1, false⟩.

A = p(x⃗) We have to distinguish two sub-cases.
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d ≠ false

prefix(AJp(x⃗)KF JDK⇓d)

= prefix({(true,∅) ↣ true ⋅ r′ ∣ r′ ∈ F JDK(p(x⃗))}⇓d)

[ since F JDK = DJDKF JDK ]

= prefix({(true,∅) ↣ true ⋅ r′ ∣ r′ ∈ DJDKF JDK(p(x⃗))}⇓d)

[ by Definition 3.1.20 ]

= prefix({(true,∅) ↣ true ⋅ r′ ∣ r′ ∈ AJBKF JDK , p(x⃗) ∶− B ∈D}⇓d)

= prefix({d ⋅ s′ ∣ s′ ∈ (AJBKF JDK)⇓d, p(x⃗) ∶− B ∈D})

[ by Inductive Hypothesis ]

= prefix({d ⋅ s′ ∣ s′ ∈ BssJD . BKd, p(x⃗) ∶− B ∈D})

[ by Rule R10 ]

= BssJD . p(x⃗)Kd

Notice that, in the second last equality, the structural induction hypothesis
cannot be applied because B can be structurally greater than p(x⃗). For this
reason, we have to introduce a second induction on the number of p(x⃗) present
on B. If B does not contain any process call p(x⃗), then we can directly apply
structural induction. Otherwise, if the agent contains one process call p(x⃗), it
is sufficient to replace the call with the body of the declaration. In this way, B
has less process calls p(x⃗) than A and we can apply the inductive hypothesis.

d = false In this case, the transition relation → is not defined for the configuration
⟨p(x⃗), false⟩, hence

prefix(AJp(x⃗)KF JDK⇓false)

= prefix({((true,∅) ↣ true ⋅ r′)⇓false ∣ r′ ∈ F JDK(p(x⃗))})

= {ε, false}

= BssJD . p(x⃗)Kfalse

Theorem 3.1.27. Let P1, P2 be two programs. Then PJP1K = PJP2K ⇐⇒ ∀c ∈ C.BssJP1Kc =
BssJP2Kc.

Proof.
By Theorem 3.1.26 it follows that for each program P and each c ∈ C, prefix(PJP K⇓c) =
BssJP Kc. Thus, we show that PJP1K = PJP2K ⇐⇒ ∀c ∈ C.prefix(PJP1K⇓c) = prefix(PJP2K⇓c).

⇒ Follows directly from Definition 3.1.25 and by definition of prefix .

⇐ To prove this implication we first need to show that PJP1K ≠ PJP2K ⇒ ∃c̄ ∈ C. PJP1K⇓c̄ ≠
PJP2K⇓c̄. Without loss of generality, assume that PJP1K ⊃ PJP2K, thus, it exists
r1 ∈ PJP1K such that r1 /∈ PJP2K. We can distinguish two cases: PJP2K is empty or
PJP2K contains at least one conditional trace.

If PJP2K = ∅, then PJP2K⇓c is empty for any possible c ∈ C. Now, if we choose c̄
to be the lub (⊗) of all the positive conditions occurring in r1, then r1⇓c̄ is a valid
trace. Therefore, PJP1K⇓c̄ ⊇ {r1⇓c̄} ≠ ∅.
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If PJP2K ≠ ∅, by the initial assumptions, it exists a conditional trace r2 ∈ PJP2K such
that r1 ≠ r2. Without loss of generality, assume that length(r1) ≤ length(r2) and that
r1 differs from r2 at position k, with k ∈ [1, length(r1)]. The index k is guaranteed
to exist.6 We consider the six possible cases, corresponding to the possible forms of
the conditional state at position k, in order to prove that there exists a store c̄ such
that PJP1K⇓c̄ ≠ PJP2K⇓c̄. In the following, the stores c̄1 and c̄2 correspond to the lub
(⊗) of all the positive conditions occurring in r1 and r2, respectively.

1. Let be (η+1 , η
−
1 ) ↣ d1 and (η+2 , η

−
2 ) ↣ d2 the k-th conditional tuple in r1 and r2,

respectively. There are three possible ways in which these two tuples can differ:

η+1 ≠ η
+

2 Let us assume that η+1 ⊢ η+2 and η+2 ⊬ η+1 . Notice that r1 has to
come from the semantics of an ask or a now construct since they are the
only tccp agents that can add information to the positive condition (see
Definition 3.1.16). Hence, there exists also a conditional trace r̄1 ∈ PJP1K
in which η+1 occurs in a negative condition (corresponding to the else branch
of a now agent) or in a stutt construct (corresponding to the suspension
of an ask agent) of the sequence. There are two cases in which r̄1 does
not exists, but both are in contradiction with the hypothesis: (1) when
η+1 = true, but this contradicts η+2 ⊬ η

+
1 or (2) when a constraint d stronger

than η+1 (d ⊢ η+1 ) is propagated. In this last case, the trace r̄1 does not exists
since the condition is in contradiction with the propagated store. However,
since η+1 ⊢ η

+
2 , it follows that d entails also η+2 (d⊗η+1 = d⊗η+2 = d). Therefore,

the propagation of d makes r1 and r2 equal. Since they were supposed to
be different only at this point, this is a contradiction with the hypothesis
r1 ≠ r2. Therefore, r̄1 exists and belongs to PJP1K. Furthermore, r̄1 differs
from any trace in PJP2K for at least the negative part of a condition or the
body of a stutt , otherwise, reasoning in a similar way as above, r1 would
also belong to PJP2K, and this is not possible.
If η+1 ⊬ η

+
2 and η+2 ⊢ η

+
1 , we can reason in a symmetric way, thus concluding

that it exists r̄2 ∈ PJP2K that differs from any trace in PJP1K for at least
the negative part of a condition or the body of a stutt .
Finally, if η+1 ⊬ η+2 and η+2 ⊬ η+1 , we can reason as before and deduce
that there exist two traces r̄1 ∈ PJP1K and r̄2 ∈ PJP2K, which contains
respectively η+1 and η+2 in the negative part of the condition, and such that
r̄1 /∈ PJP2K and r̄2 /∈ PJP1K.
In case r̄1 (respectively r̄2) comes from an ask agent we remand to the
following Points 2, 3 and 4 of the proof, where we deal with the conditional
traces containing stutt constructs. Otherwise, if r1 comes from a now agent
we can reduce to the following case where we deal with the negative part
of the conditions (η−1 ≠ η−2 ).

η−1 ≠ η
−

2 Let us first assume that η−1 ⊂ η−2 . This means that the store at position
k in r2 has to satisfy a stronger condition than the one in r1. Let c̄ ∶= c̄1⊗h

−
2 ,

with h−2 ∈ η−2 ∖η
−
1 . Under these conditions, r1⇓c̄ computes a behavioral timed

trace whereas r2⇓c̄ computes no trace since, at position k, c̄ entails one of

6There are two cases in which k does not exist, but both are in contradiction with the initial hypothesis:
(1) r1 = r2 or (2) one of the traces is a prefix of the other.
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the stores in the negative condition.
For the case in which η−2 ⊂ η−1 we choose c = c̄2 ⊗ h

−
1 , with h−1 ∈ η−1 ∖ η

−
2 and

reason in an symmetric way.
Finally, if η−1 ⊈ η−2 and η−2 ⊈ η−1 , we can choose indifferently c̄ = c̄1 ⊗ h

−
2 or

c̄ = c̄2 ⊗ h
−
1 and conclude that r1⇓c̄ computes a behavioral timed trace but

r2⇓c̄ is not defined, or vice-versa.
Thus, we can conclude that PJP1K⇓c̄ ≠ PJP2K⇓c̄.

d1 ≠ d2 Consider c̄ = c̄1 = c̄2. There are two possible cases. Assume first that
c̄ ⊬ d1 and c̄ ⊬ d2. Both r1 and r2 must be compatible with their own
conditions, thus, being the store monotonic, it happens that r1⇓c̄ and r2⇓c̄
are both defined. Moreover, we know that η+1 = η+2 and from Property 3.A.1
d1 ⊢ η

+
1 and d2 ⊢ η

+
1 . Since c̄ ⊬ d1 and c̄ ⊬ d2, we can conclude that in r1⇓c̄

at position k we have the store d1, whereas in r2⇓c̄ at the same position
we find the store d2 that is different from d1 by the initial assumptions.
Thus r1⇓c̄ ≠ r2⇓c̄. Assume now that c̄ contains more information than
the store d1 (respectively d2). Then, we know that, at certain point in r1

(respectively r2), the positive condition is stronger than d1 (respectively
d2). Therefore, we can reason as in the previous case when η+1 ≠ η+2 and r1

(respectively r2) are produced by the semantics of an ask or a now agent.

2. Let stutt(η−1 ) (respectively stutt(η−2 )) be the k-th conditional state in r1 (respec-
tively r2). It is sufficient to proceed as in Point 1 of this proof (case η−1 ≠ η−2 ) to
show that there exists a store c̄ such that r1⇓c̄ is well defined while r2⇓c̄ is not.
For instance, if η−1 ⊂ η−2 we set c̄ = c̄1⊗h

−
2 , with h−2 ∈ η−2 ∖ η

−
1 . It is easy to notice

that r1⇓c̄ computes a behavioral timed trace but r2⇓c̄ recovers no trace since
at position k the constraint h−2 belongs to the negative part of the condition.
Therefore, PJP1K⇓c̄ ≠ PJP2K⇓c̄.

3. Let η1 ↣ d1 be the k-th conditional tuple in r1 and stutt(η−2 ) the k-th element
in r2. Consider c̄ = c̄1. Up to instant k, r1⇓c̄ and r2⇓c̄ coincide and, as r1 and r2

differ only at position k, c̄ satisfies all the conditions in r1 and in r2 till up that
position. The behavioral timed trace r2⇓c̄ ends at position k since a stutt has
been encountered (see Definition 3.1.25). However, since r1 is maximal, r1⇓c̄
does not end at position k but continues with at least another state, otherwise
we would have found an ending symbol ⊠. In conclusion, r2⇓c̄ is at least one
store longer than r1⇓c̄, thus, PJP1K⇓c̄ ≠ PJP2K⇓c̄.

4. If η2 ↣ d2 is the k-th element in r2 and stutt(η−1 ) that in r1, then the proof is
symmetric to previous Point 3.

5. Let ⊠ and η2 ↣ d2 be the k-th states of r1 and r2, respectively. We can reason
similarly to Point 3 above in this proof by choosing c̄ = c̄2. By hypothesis,
r1 and r2 differ only at position k, thus, r1⇓c̄ and r2⇓c̄ compute the same
behavioral timed trace up to position k-th. However, while r1⇓c̄ stops at instant
k (an ending symbol ⊠ is found), r2⇓c̄ is at least one store longer. Thus,
PJP1K⇓c̄ ≠ PJP2K⇓c̄.

6. Let ⊠ be the k-th element of r1 and stutt(η2) the conditional state occurring in
r2 at the same position. We set c̄ = c̄1 ⊗h

−
2 , with h−2 ∈ η−2 ∖ η

−
1 . In this way, r1⇓c̄

is defined but r2⇓c̄ computes no trace since, at position k, the constraint h−2 is
required not to be entailed by the current store. Thus, PJP1K⇓c̄ ≠ PJP2K⇓c̄.
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In conclusion, we can always choose an adequate c̄ which differentiates PJP1K⇓c̄ from
PJP2K⇓c̄. From Definition 3.1.16 and Definition 3.1.20, it can be noticed that the
traces contained in PJP1K and PJP2K either end in ⊠ or are infinite. From this
observation, it follows directly that, if PJP1K⇓c̄ ≠ PJP2K⇓c̄, then prefix(PJP1K⇓c̄) ≠
prefix(PJP2K⇓c̄). Otherwise, there would exists a trace in PJP1K that is prefix of a
trace in PJP2K (or viceversa), which is not possible since ⊠ is a termination sym-
bol and an infinite trace cannot prefix another infinite trace. Thus, we can con-
clude that if PJP1K ≠ PJP2K, then there exists c̄ ∈ C such that prefix(PJP1K⇓c̄) ≠

prefix(PJP2K⇓c̄), and this concludes the proof.

Proposition 3.1.28. Let D1, D2 ∈ DΠ
C. Then D1 ≈F D2 ⇐⇒ ∀A ∈ AΠ

C.PJD1 . AK =

PJD2 . AK.

Proof.

⇒ Straightforward.

⇐ By Definition 3.1.20, PJD1 . AK = AJAKF JD1K and PJD2 . AK = AJAKF JD2K . We have
to check that F JD1K = F JD2K. The only case depending on the interpretation is
when A = p(x⃗). By hypothesis,

AJp(x⃗)KF JD1K = ⊔{(true,∅) ↣ true ⋅ r ∣ r ∈ F JD1K(p(x⃗))}

= ⊔{(true,∅) ↣ true ⋅ r ∣ r ∈ F JD2K(p(x⃗))} = AJp(x⃗)KF JD2K

We have to check that F JD1K(p(x⃗)) and F JD2K(p(x⃗)) coincide for each p(x⃗) ∈

PC. Since F JD1K (respectively F JD2K) is the least fixpoint of DJD1K� (respectively
DJD2K�), we know that it contains only information regarding the procedure calls
in D1 (respectively D2). So we can conclude that F JD1K = F JD2K.

Corollary 3.1.29. Let D1, D2 ∈ DΠ
C. Then D1 ≈ss D2 if and only if D1 ≈F D2.

Proof.

Consider D1, D2 ∈ DΠ
C:

D1 ≈F D2 ⇔F JD1K = F JD2K
[ by Proposition 3.1.28 ]

⇔∀A ∈ AΠ
C.PJD1 . AK = PJD2 . AK

[ by Theorem 3.1.27 ]

⇔∀A ∈ AΠ
C∀c ∈ C.prefix(PJD1 . AK⇓c) = prefix(PJD2 . AK⇓c)

[ by Theorem 3.1.26 ]

⇔∀A ∈ AΠ
C∀c ∈ C.BssJD1 . AKc = BssJD2 . AKc

⇔D1 ≈ss D2
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3.A.2 Proofs of Section 3.2

Lemma 3.A.9 (M, ⊑, ⊔, ⊓, M, {ε}) −−−−−→Ð→←−−−−−−−
αio

γio
(IO, ⊆, ⋃, ⋂, IO, ∅)

Proof.
αio is monotonic Let R1,R2 ∈ M such that R1 ⊑ R2, thus, αio(R1) ⊆ αio(R2). Other-

wise, if there exists an input-output pair belonging to αio(R1) but not to αio(R2),
this means that the associated trace belongs to R1 but not to R2, and this contradicts
the hypothesis.

γio is monotonic Let P1, P2 ∈ IO such that P1 ⊆ P2. Suppose that γio(P1) ⋢ γio(P2), in
this case, there exists r1 ∈ γio(P1) but not r2 ∈ γio(P1) that extends r1 (r1 is a prefix
of r2). It is easy to see that this situation is impossible since, by the definition of
γio , r1 has to belong also to γio(P2) (since P1 ⊆ P2) and r1 trivially extends itself.

(γio ○αio) is extensive This means that for all R ∈ M, R ⊑ γio(αio(R)). We show that
r ∈ R⇒ r ∈ γio(αio(R)); we distinguish three cases:

r = η1 ↣ c1 ⋅ ⋅ ⋅ ⋅ ⋅ ηn ↣ cn ⋅ ⊠ We have that:

αio(R) ⊇ {⟨c0, fin(c)⟩ ∣ c0 ∈ C and last(r⇓c0) = c}.

Thus, by (3.2.2), it follows that r ∈ γio(αio(r)).

r = η1 ↣ c1 ⋅ ⋅ ⋅ ⋅ ⋅ stutt(η−n) ⋅ . . . We have that:

αio(R) ⊇ {⟨c0, fin(c)⟩ ∣ c0 ∈ C and last(r⇓c0) = c}.

From (3.2.2), it follows that r ∈ γio(αio(r)).
r = η1 ↣ c1 . . . ηn ↣ cn . . . (an infinite sequence that does not contain any stutt).

We have that αio(R) ⊇ {⟨c0, inf (c)⟩ ∣ c0 ∈ C, r⇓c0 = c
′
0 . . . c

′
i . . . , and ⊗i≥0c

′
i = c}.

By (3.2.2), we have that r ∈ γio(αio(r)).

(αio ○γio) is the identity for IO This means that for all P ∈ IO, P = αio(γio(P )).
We show the two inclusions separately.

⊆ We first show that p ∈ P ⇒ p ∈ αio(γio(P )) by distinguishing two sub-cases.

p = ⟨c0, fin(cn)⟩ In this case, γio(P ) contains all the conditional traces r such
that last(r⇓c0) = cn. By (3.2.1), p ∈ αio(γio(P )).

p = ⟨c0, inf (c)⟩ We have that γio(P ) contains all the conditional state se-
quences r such that r⇓c0 = c0 . . . ci . . . and ⊗i≥0 = c. By (3.2.1), p ∈

αio(γio(P )).

⊇ Now we show the other inclusion i.e., p ∈ αio(γio(P )) ⇒ p ∈ P . We have to
consider two sub-cases.
p = ⟨c0, fin(cn)⟩ In this case, it exists r ∈ γio(P ) such that last(r⇓c0) = cn.

Obviously, p ∈ P , otherwise r would not belong to γio(P ).

p = ⟨c0, inf (c)⟩ In this case, it exists r ∈ γio(P ) such that r⇓c0 = c0 . . . ci . . .
and ⊗i≥0 = c. It is easy to notice that p ∈ P , otherwise, by using γio , we
would not obtain r.
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Proposition 3.2.4. Let D ∈ DΠ
C and A ∈ AΠ

C. Then, αio(PJD . AK) = BioJD . AK.

Proof.

Consider D ∈ DΠ
C and A ∈ AΠ

C, then αio(PJD.AK) = BioJD.AK. We show the two inclusions
independently.

⊆ Let r ∈ PJD . AK and c0 ∈ C such that r⇓c0 is defined. In order to show that
αio({r}) ⊆ B

ioJD . AK, we distinguish two cases.

1. In case r⇓c0 is finite, by (3.2.1), αio({r}) = ⟨c0, fin(cn)⟩ ∈ αio(PJD .AK), where
cn ∶= last(r⇓c0). Moreover, by Definitions 3.1.20, 3.1.16 and 3.1.25, it is easy to
notice that r must be of one of the following forms:

(a) r ends with ⊠,

(b) r contains a stutt or

(c) r contains a conditional store η ↣ d such that there is no stutt before it
and c0 ⊗ d = false.

Now, let us show that on the behavioral part, when A, with initial store c0,
behaves as ⟨A, c0⟩ →

∗ ⟨An, cn⟩ /→ (the sequence is finite), r takes also one of
those forms. Looking at the agent semantics A (Definition 3.1.16) we observe
that:

(a) we obtain a sequence that ends with ⊠ if a subagent of A is equal to skip or
tell, this means that, starting from an initial store c0 such that last(r⇓c0) is
well defined, the operational semantics cannot perform any step from the
reached configuration ⟨skip, cn⟩ /→;

(b) when A contains an agent∑ni=1 ask(gi) → Ai and ∀i ∈ [1, n]. gi ≠ false, then a
stutt(∪ni=1) is introduced. Since we assume that r⇓c0 is well defined, it holds
that the guards are not entailed by c0 (merged with the store produced by
the sequence up to that position), thus the operational semantics cannot
perform any step from the reached configuration ⟨∑ni=1 ask(gi) → Ai, cn⟩ /→;

(c) when r contains a conditional state η ↣ d (that occurs before any stutt)
such that c0 ⊗ d = false, we can deduce that, starting from ⟨A, c0⟩, we
reach in a finite number of operational steps the state ⟨An, false⟩ /→, from
which no further derivation is possible since an inconsistent store has been
produced.

Thus, by Definition 3.2.2, ⟨c0, fin(cn)⟩ ∈ B
ioJD . AK.

2. In case r⇓c0 = c0⋯ci⋯ is infinite, let us define c ∶= ⊗i≥0ci. By (3.2.1), αio({r}) =
⟨c0, inf (c)⟩ ∈ αio(PJD .AK). By Theorem 3.1.26, it is easy to notice that r⇓c0 ∈
BssJD .AKc0 , in fact, agent A with initial store c0 behaves in the following way:
⟨A, c0⟩ → . . . → ⟨Ai, ci⟩ → . . . . By Definition 3.2.2, it follows that ⟨c0, inf (c)⟩ ∈
BioJD . AK.

⊇ Let p ∈ IO, we show that p ∈ BioJD .AK ⇒ p ∈ αio(PJD .AK). Let us distinguish two
cases.
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p = ⟨c0, fin(cn)⟩ By Definition 3.2.2, it follows that ⟨A, c0⟩ → . . . → ⟨An, c0⟩ /→,
and by Definition 3.1.1, c0⋯cn ∈ BssJD . AKc0 . By Theorem 3.1.26, it exists
r ∈ PJD.AK such that r⇓c0 = c0⋯cn, and by (3.2.1) it follows that ⟨c0, fin(cn)⟩ ∈
αio(PJD . AK).

p = ⟨c0, inf (c)⟩ By Definition 3.2.2, it follows that ⟨A, c0⟩ → . . . → ⟨Ai, ci⟩ →,
and by Definition 3.1.1, c0⋯ci ⋅ ⋅ ⋅ ∈ B

ssJD . AKc0 . By Theorem 3.1.26, it exists
r ∈ PJD.AK such that r⇓c0 = c0⋯ci⋯, and by (3.2.1) it follows that ⟨c0, inf (c)⟩ ∈
αio(PJD . AK).

Theorem 3.2.6. Let P1 and P2 be two tccp programs such that no trace in PJP1K ⊔ PJP2K
is a failed conditional trace. Then, OioJP1K = OioJP2K if and only if Bio

F JP1K = Bio
F JP2K.

Proof.
From Proposition 3.2.4 and by definition of πF (Definition 3.2.2), for each tccp program
P , πF (αio(PJP K)) = Bio

F JP K. Thus, it is sufficient to show that OioJP1K = OioJP2K ⇐⇒
πF (αio(PJP1K)) = πF (αio(PJP2K)) for P1 and P2 tccp programs such that no trace in
PJP1K ⊔ PJP2K is a failed conditional trace. We prove the two directions separately.

⇒ We prove the equivalent implication:

πF (αio(PJP1K)) ≠ πF (αio(PJP2K)) ⇒ OioJP1K ≠ OioJP2K.

Let us assume, without loss of generality, that πF (αio(PJP1K)) ⊂ πF (αio(PJP2K)),
which means that there exist r2 ∈ PJP2K and c0 ∈ C such that r2⇓c0 = c0⋯cn, but it
does not exist r1 ∈ PJP1K such that r1⇓c0 = c0⋯cn. Furthermore, cn ≠ false since, by
hypothesis, r2 is not a failed conditional trace. By Theorem 3.1.26, c0⋯cn ∈ B

ssJP2K
and, by Definition 3.2.2, ⟨c0, cn⟩ ∈ B

io
F JP2K. Since Bio

F andOio differ only on sequences
terminating in false and cn ≠ false, it follows that ⟨c0, cn⟩ ∈ O

ioJP2K. On the other
hand, we have that c0⋯cn ∉ BssJP1K, thus ⟨c0, cn⟩ ∉ B

io
F JP1K. It is easy to see that,

given a tccp program P , OioJP K ⊆ Bio
F JP K, thus it holds that ⟨c0, cn⟩ ∉ O

ioJP1K. This
means that ⟨c0, cn⟩ ∈ O

ioJP2K∖OioJP1K and we can conclude that OioJP1K ≠ OioJP2K.

⇐ We prove the equivalent implication:

OioJP1K ≠ OioJP2K ⇒ πF (αio(PJP1K)) ≠ πF (αio(PJP2K)).

Without loss of generality, assume thatOioJP1K ⊂ OioJP2K, thus, there exists ⟨c0, cn⟩ ∈
OioJP2K such that ⟨c0, cn⟩ ∉ O

ioJP1K. Since no trace in PJP1K ⊔ PJP2K is failed, we
can assume that cn ≠ false. This means that, by using the transition relation defined
in [43], we have a derivation of the form ⟨A2, c0⟩ → . . . ⟨A′

2, cn⟩ /→, with A2,A
′
2 ∈ AΠ

C,
D2 ∈ DΠ

C and P2 = D2 . A2; On the other hand, it can be noticed that, by using the
transition relation of Figure 2.2, for P1 there is no derivation starting with c0 and
ending in cn. Thus, we have that ⟨c0, cn⟩ ∈ B

io
F JP2K and ⟨c0, cn⟩ ∉ B

io
F JP1K. From

Proposition 3.2.4, it follows that ⟨c0, cn⟩ ∈ πF (αio(PJP2K)) ∖ πF (αio(PJP1K)) and
we can conclude that πF (αio(PJP1K)) ≠ πF (αio(PJP2K)).
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Abstract Diagnosis for tccp based on

constraint system abstractions

Abstract

We present a generic abstract diagnosis framework for tccp programs. This is an
effective and completely automatic debugging methodology based on abstract inter-
pretation and parametric to an abstract semantics modeling the properties of interest.

We associate to programs an abstract semantics defined as the least fixpoint of a
(monotonic) immediate consequence operator. Then, given the approximated intended
behavior of the program, we derive a finitely terminating bottom-up diagnosis method
which can be used statically to find discrepancies between the abstract behavior of the
program and the intended one. It is shown that these “abstract” discrepancies reflect
possible errors in the “concrete” behavior of the program.

We also present an instance of this method based on the abstraction of the under-
lying constraint system. The elements of the abstract domain are abstract compact
sequences which contain approximated information in the conditions and in the stores
and collapse in an unique state all the consecutive states that become equal after the
abstraction.

Finding program bugs is a long-standing problem in software construction. In the
concurrent paradigm, the problem is even worse and the traditional tracing techniques
become almost useless. In fact, in presence of concurrency, an error can arise from the
interaction of some agents running in parallel. This, on one hand, makes computations
not replicable in practice and, on the other hand, complicates the task of locating the
exact position of the bug. In the context of tccp the presence of timing features adds
further difficulties in the debugging phase, since bugs can arise from a synchronization
error between the agents running in parallel. Moreover, the presence of non-determinism
further complicates the task of finding bugs in tccp programs.

There has been a lot of work on algorithmic debugging [113] for declarative languages,
which could be a valid proposal for concurrent paradigms, but little effort has been done
for the particular case of the concurrent constraint paradigm (ccp in short; [104]).

In this chapter, we develop an abstract diagnosis method for tccp using the ideas of
[25]. Abstract diagnosis was first developed for logic programming in [25] and later it has
been applied to other paradigms [1, 8, 51]. This research revealed that a key point for the
efficacy of the resulting debugging methodology is the adequacy of the concrete semantics.
Thus, in this thesis, much effort has been dedicated to the development of an appropriate
concrete semantics for the tccp language to start with (see Section 3.1 in Chapter 3).
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In order to achieve an effective method, abstract interpretation is used to approxi-
mate the concrete semantics and, because of the abstraction, results may be less precise
than those that would be obtained by using the concrete semantics itself. By using suit-
able abstract domains, specific details of the computation can be hidden and, thus, the
information that is required to the user about the (abstract) intended behavior can be
dramatically reduced. Obviously, if we use more abstract domains we can detect less er-
rors. Furthermore, by using a more expressive abstract domain, we gain in precision, but
the specification phase become more complicated and error-prone. Thus, the choice of an
abstract domain is often a tradeoff between the precision of errors that can be detected
and the effort in providing the specification.

Abstract diagnosis is parametric w.r.t. an abstract program property of interest mod-
eled in a suitable abstract domain A and it is inherently based on the use of a correct ap-
proximation Dα of the concrete immediate consequence operator D (see Definition 3.1.20).
Dα evaluates a program in the abstract domain A by focusing only in the information
about the considered abstract property and by abstracting away from the other program
details.

We show that, given the abstract intended specification (written in A), we can check
the correctness of a tccp set of declarations D by a single application of DαJDK and thus,
by a simple static test, we can determine all the declarations which are wrong w.r.t. the
considered abstract property.

The diagnosis is based on the detection of incorrect rules and uncovered elements, both
defined in terms of one application of DαJDK to the abstract specification. It is worth
noting that no fixpoint computation is required, since the abstract semantics does not
need to be computed.

Thanks to the expressiveness of our concrete semantics, our method is defined on
the full tccp language. Therefore, it is able to deal with the constructors that introduce
non-monotonic behaviors: the ask , now and hiding agents.

This chapter is organized as follows. In Section 4.1, a general abstract diagnosis
methodology for tccp is presented by using the semantics defined in Section 3.1. In Sec-
tion 4.2 an abstract domain able to model finite and infinite tccp computations is intro-
duced and formally related with the domain of (concrete) conditional traces by means of
a Galois Insertion. The elements of the abstract domain are abstract compact sequences
which contain approximated information in the conditions and in the stores and collapse
in an unique state all the consecutive states that become equal after the abstraction. In
Section 4.3, an abstract semantics is induced from the concrete semantics (Section 3.1)
and from the defined Galois Insertion. In Section 4.4 some examples of abstract diagnosis
of tccp programs are illustrated by using the induced abstract semantics of Section 4.3.
All the technical proofs of the results can be found in the chapter appendix 4.A.

4.1 Abstract Diagnosis for tccp based on Galois Insertions

In this section, following the approach of [25], we define a general abstract diagnosis
methodology for tccp starting from the concrete semantics D defined in Section 3.1. This
approach is parametric to a Galois Insertion between the domain M of conditional traces

and an abstract domain A chosen to model the property of interest: (M, ⊑) −−−−→Ð→←−−−−−
α

γ
(A, ≤).

Let us recall from Definition 1.3.1 that the abstract domain has to be a complete lattice
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on the form (A, ≤, ⋁, ⋀, ⊺, �). This abstraction can be systematically lifted to a Galois

Insertion I −−−−→Ð→←−−−−−
ᾱ

γ̄
[PC →A] by function composition (i.e., ᾱ(f) = α ○f). In the following

we denote as IA the domain of abstract interpretations [PC →A].
As explained in Section 1.3, the optimal abstract version of Dα is defined simply

as DαJDK ∶= ᾱ ○ DJDK ○ γ̄ guaranteeing that Dα is a correct approximation of D and
Fα ∶= DαJDK↑ω is the best correct approximation of F by construction. We recall that
correct means α(F JDK) ≤ FαJDK and best means that it is the minimum (w.r.t. ≤) of all
correct approximations.

Now, following the ideas of [25], we define the abstract diagnosis of tccp. The framework
of abstract diagnosis comes from the idea of considering the abstract versions of Park’s
Induction Principle1. It can be considered as an extension of declarative debugging since
there are instances of the framework that deliver the same results. In general, diagnosing
w.r.t. abstract properties relieves the user from having to specify in excessive detail the
program behavior (which could be more error-prone than the coding itself).

Let us now introduce the workset of abstract diagnosis by starting from the definition
of correct and complete set of declarations.

Definition 4.1.1 Given a set of declarations D and Sα ∈ A, which is the specification of
the intended behavior of D w.r.t. the property α, we say that

1. D is (abstractly) partially correct w.r.t. Sα if α(F JDK) ≤ Sα.

2. D is (abstractly) complete w.r.t. Sα if Sα ≤ α(F JDK).

3. D is totally correct w.r.t. Sα, if it is partially correct and complete.

It is worth noting that the above definition is given in terms of the abstraction of the
concrete semantics α(F JDK) and not in terms of the (possibly less precise) abstract se-
mantics FαJDK. Note that Sα is the abstraction of the intended concrete semantics of D.
Thus, the user can only reason in terms of the properties of the expected concrete seman-
tics without being concerned with (approximate) abstract computations. The diagnosis
determines the “originating” symptoms and, in the case of incorrectness, the relevant pro-
cess declaration in the program. This is captured by the definitions of abstractly incorrect
process declaration and abstract uncovered element :

Definition 4.1.2 Let D ∈ DΠ
C, R a process declaration for process p, e ∈ A and Sα ∈ IA.

• R is abstractly incorrect w.r.t. Sα (on testimony e) if e ≤ DαJ{R}KSα(p(x⃗)) and
e ∧ Sα(p(x⃗)) = �.

• e is an uncovered element for p(x⃗) w.r.t. Sα if e ≤ Sα(p(x⃗)) and e ∧DαJDKSα(p(x⃗)) =
�.

Informally, R is abstractly incorrect if it derives a wrong abstract element e from the
intended semantics. Dually, e is uncovered if the declarations cannot derive it from the
intended semantics.

It is worth noting that the notions of correctness and completeness are defined in
terms of α(F JDK), i.e., in terms of abstraction of the concrete semantics. The abstract

1A concept of formal verification that is undecidable in general.
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version of algorithmic debugging [113], which is based on symptoms (i.e., deviations be-
tween α(F JDK) and Sα), requires the construction of α(F JDK) and therefore a fixpoint
computation. In contrast, the notions of abstractly incorrect process declarations and
abstract uncovered elements are defined in terms of just one application of DαJDK to Sα.
The issue of the precision of the abstract semantics is specially relevant in establishing the
relation between the two concepts, i.e., the relation between abstractly incorrect process
declarations and abstract uncovered elements on one side, and abstract partial correctness
and completeness, on the other side.

Theorem 4.1.3 Let D ∈ DΠ
C and Sα ∈ IA.

1. If there are no abstractly incorrect process declarations in D (i.e., DαJDKSα ≤ Sα),
then D is partially correct w.r.t. Sα (i.e., α(F JDK) ≤ Sα).

2. Let D be partially correct w.r.t. Sα. If D has abstract uncovered elements then D is
not complete (i.e., Sα /≤ α(F JDK)).

Absence of abstractly incorrect declarations is a sufficient condition for partial correct-
ness, but it is not necessary. When applying the diagnosis w.r.t. approximate properties,
the results may be weaker than those that can be achieved on concrete domains just
because of approximation. For this reason, it can happen that a (concretely) correct dec-
laration is abstractly incorrect. Hence, abstract incorrect declarations are in general just
a warning about a possible source of errors.

However, an abstract correct declaration cannot contain an error; thus, no (manual)
inspection is needed for declarations which are not abstractly incorrect. Moreover, as
shown by the following theorem, all concrete errors—that are “visible”—are detected, as
they lead to an abstract incorrectness or abstract uncovered.

Theorem 4.1.4 Let r be a process declaration and S a concrete specification.

1. If DJ{r}KS /⊑S and α(DJ{r}KS )/≤α(S) then r is abstractly incorrect w.r.t. α(S).

2. If there exists an abstract uncovered element a w.r.t. α(S), such that γ(a) ⊑ S and
γ(�) = {ε}, then there exists a concrete uncovered element c w.r.t. S (i.e., c ⊑ S and
c ⊓DJDKS = {ε}).

The principal results of abstract diagnosis can be summarized by the following points:

• absence of abstractly incorrect rules implies partial correctness,

• every incorrectness error is identified by an abstractly incorrect rule,

• an abstract incorrect rule does not always correspond to a bug (it is just a warning),

• there does not exist a sufficient condition for completeness.

It is important to note that this method is correct by construction because it has been
derived by applying abstract interpretation techniques properly.

In the following, we present an abstraction scheme for the domain M and the corre-
sponding induced abstract semantics for tccp which is obtained by using standard abstract
interpretation techniques. This semantics will be used to instantiate the abstract diagnosis
framework and achieve a fully-automatic debugging methodology for tccp.
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4.2 Abstraction scheme

In this section we present an abstraction scheme for tccp computations, i.e., maximal sets
of conditional traces. This abstraction is defined by successive lifting. We start with a
function that abstracts the information component of the program semantics, i.e., the
constraints, then, we build the abstraction of conditional states, then of conditional traces
and, finally, of maximal sets.

The result of the abstraction is a maximal set of abstract conditional traces. An
abstract conditional trace contains approximated information in its conditions and stores,
furthermore, consecutive conditional states that become identical after the approximation
are collapsed together in a unique state.

We define a Galois Insertion that formalizes this approximation by relating the domain
of concrete conditional traces with the domain of abstract ones.

4.2.1 Constraint System Abstraction

In the semantics of Section 3.1, constraints can assume different meanings depending on
the role they play within a conditional state. On one hand, positive conditions and stores
represent the constraints that are entailed by the store. For this reason, these constraints
can be considered as the positive information in the trace. On the other hand, constraints
contained in negative conditions and stuttering constructs are those that must not be
entailed in order to make the computation proceed, thus, they can be seen as the negative
information in the trace.

As a consequence, in order to approximate correctly the information in the conditional
traces, it is necessary to define two different approximating functions for the (concrete)
underlying constraint system C = ⟨C,⪯,⊗,⊕, false, true,Var ,∃⟩:

• an over-approximating function τ+ for the positive information, and

• an under-approximating function τ− for the negative information.

The over-approximating function τ+∶C→ Ĉ maps a concrete constraint into an upper-
abstract constraint Ĉ = ⟨Ĉ, ⪯̂, ⊗̂, ⊕̂, ˆfalse, ˆtrue,Var , ∃̂⟩. Similarly, the under-approximating
function τ−∶ ℘(C) → Č maps a set of concrete constraints into a lower-abstract constraint
system Č = ⟨Č, ⪯̌, ⊗̌, ⊕̌, ˇfalse, ˇtrue,Var , ∃̌⟩. We often use the inverse relations ⊢̂ and ⊢̌
instead of ⪯̂ and ⪯̌, respectively.

We define two “external” operations ×̂∶C × Ĉ → Ĉ and ×̌∶C × Č → Č that update an
abstract constraint with the information contained in a concrete constraint. In addition, a
“bridge” relation ⊢̃∈ Ĉ× Č is introduced in order to decide if an upper-abstract constraint
is consistent with a lower-abstract constraint.

Abstract and concrete constraint systems are related by the following conditions. Given
c, c′, a, b ∈ C and C,C ′ ⊆ C,

c ×̂ τ+(a) = τ+(c⊗ a) (4.2.1a)

c ×̌ τ−(C) = τ−({c} ∪C) (4.2.1b)

τ+(a⊗ b) = τ+(a) ⊗̂ τ+(b) (4.2.1c)

τ−(C ∪C ′) = τ−(C) ⊕̌ τ−(C ′) (4.2.1d)

c ⊢ c′ Ô⇒ τ+(c) ⊢̂ τ+(c′) (4.2.1e)
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C ⊆ C ′ Ô⇒ τ−(C) ⊢̌ τ−(C ′) (4.2.1f)

τ+(∃x a) = ∃̂x τ
+(a) (4.2.1g)

τ−({∃x c ∣ c ∈ C}) = ∃̌x τ
−(C) (4.2.1h)

∀c ∈ C. a ⊬ c ⇐⇒ τ+(a) ⊬̃ τ−(C) (4.2.1i)

The first two conditions establish the relation between the “external” operations and the
merge and join of the concrete constraint systems. Then, conditions (4.2.1c) and (4.2.1d)
state that the ⊗̂ (respectively ⊗̌) operator must be precise w.r.t. the τ+ (respectively
τ−) abstractions. Condition (4.2.1e) says that the over-approximation is correct, in the
sense that, if two concrete stores are related, then such relation is preserved in the over-
approximation (τ+). Properties (4.2.1g) and (4.2.1h) relate the concrete hiding operator
with the abstract ones in the expected way. Finally, the last condition is very important
since it makes explicit the relation between the two abstractions. It says that a given
concrete store does not satisfy any of those in a given set C if and only if its over-
approximation cannot satisfy (by means of the “bridge” relation) the under-approximation
of the set.

It follows directly from (4.2.1e) that τ+(true) = ˆtrue (since ∀c ∈ C, c ⊢ true Ô⇒
τ+(c) ⊢̂ τ+(true)) and τ+(false) = ˆfalse (since ∀c ∈ C, false ⊢ cÔ⇒ τ+(false) ⊢̂ τ+(c)).

Furthermore, by (4.2.1f), τ−(∅) = ˇfalse (since ∀C ⊆ C, ∅ ⊆ C Ô⇒ τ−(∅) ⊢̌ τ−(C)) and
τ−(C) = ˇtrue (since ∀C ⊆ C, C ⊆ C Ô⇒ τ−(C) ⊢̌ τ−(C)).

Let us show some examples that make explicit the kind of constraint system abstrac-
tions we are interested in.

Example 4.2.1 (Finite Domain Abstraction)

Consider the concrete constraint system L ∶= ⟨L,⇐,∧,∨, false, true,Var ,∃⟩ defined in
1.4.3 and suppose we are interested only in the variables whose value belongs to a given
range of natural numbers. We introduce an upper-abstract constraint system F̂D(n) ∶=
⟨FD(n),⇐,∧,∨, false, true,Var ,∃⟩, where FD(n) ∶= {x =̂ k ∣ x ∈ Var , 0 ≤ k ≤ n − 1}. As
illustrated in [87], this constraint system provides a theory of variables ranging over a
finite domain of values {0, . . . , n − 1}.

The Hasse diagram of this abstract constraint system is:

false

x =̂ 0 x =̂ 1 . . . . . . . . . x =̂ n − 2 x =̂ n − 1

true

The abstract over-approximating function τ+ which relates L and F̂D(n) is defined by
cases:

τ+(x = k) =

⎧⎪⎪
⎨
⎪⎪⎩

x =̂ k if 0 ≤ k < n

false otherwise

τ+(x < k) =

⎧⎪⎪
⎨
⎪⎪⎩

(x =̂ 0) ∨ ⋅ ⋅ ⋅ ∨ (x =̂ k − 1) if 0 < k ≤ n

false otherwise
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τ+(x ≤ k) =

⎧⎪⎪
⎨
⎪⎪⎩

(x =̂ 0) ∨ ⋅ ⋅ ⋅ ∨ (x =̂ k) if 0 ≤ k < n

false otherwise

τ+(x > k) =

⎧⎪⎪
⎨
⎪⎪⎩

(x =̂ k + 1) ∨ ⋅ ⋅ ⋅ ∨ (x =̂ n − 1) if 0 ≤ k < n − 1

false otherwise

τ+(x ≥ k) =

⎧⎪⎪
⎨
⎪⎪⎩

(x =̂ k) ∨ ⋅ ⋅ ⋅ ∨ (x =̂ n − 1) if 0 ≤ k < n

false otherwise

τ+(false) = false

τ+(true) = true

The corresponding lower-abstract constraint system is F̌D(n) ∶= ⟨℘(FD(n)),⊆,∪,∩,
FD(n),∅,Var ,∃⟩ with the associated function τ− defined as τ−(C) = ⋃c∈C τ

+(c).
The external operator ×̂ is defined as c ×̂ d̂ = τ+(c) ∧ d̂, while ×̌ is defined as c ×̌ ď =

τ−({c}) ∪ ď. Therefore, it follows directly that the conditions (4.2.1a) and (4.2.1b) hold.
The bridge relation ⊢̃ is defined as â ⊢̃ B̌ ⇐⇒ ∃b̂ ∈ B̌. â ⇒ b̂, however, we usually deal
with the negative relation ⊬̃: â ⊬̃ B̌ ⇐⇒ ∀b̂ ∈ B̌. â /⇒ b̂.

It is easy to check that also the rest of conditions hold.
Let us show some examples for the conditions regarding precision (4.2.1c) and (4.2.1d).

We choose n = 5, thus the abstract domain is F̂D(5). Let x = 2 and x = 4 be a and b in
condition (4.2.1c):

τ+(x = 2 ∧ x = 4) = τ+(false) = false

τ+(x = 2) ∧ τ+(x = 4) = x =̂ 2 ∧ x =̂ 4 = false

Now, let x > 2 and x > 3 be a and b in condition (4.2.1c):

τ+(x > 2 ∧ x > 3) = τ+(x > 3) = (x =̂ 4) ∨ (x =̂ 5)

τ+(x > 2) ∧ τ+(x > 3) = ((x =̂ 3) ∨ (x =̂ 4) ∨ (x =̂ 5)) ∧ ((x =̂ 4) ∨ (x =̂ 5)) = (x =̂ 4) ∨ (x =̂ 5)

Thus, in these examples the condition (4.2.1c) holds. It also holds when the abstraction
of one of the elements is false:

τ+(x = 2 ∧ x = 7) = τ+(false) = false

τ+(x = 2) ∧ τ+(x = 7) = x =̂ 2 ∧ false = false

Now, let {x = 2} and {x = 3} be C and C ′ in condition (4.2.1d):

τ−({x = 2, x = 3}) ={τ+(x = 2), τ+(x = 3)} = {x =̂ 2, x =̂ 3}

τ−({x = 2}) ∪ τ−({x = 3}) ={τ+(x = 2), τ+(x = 3)} = {x =̂ 2, x =̂ 3}

Let us consider also the case when in one of the sets C and C ′ there is an element whose
abstraction is false:

τ−({x = 2} ∪ {x = 9}) ={τ+(x = 2)} ∪ {τ+(x = 9)} = {x =̂ 2} ∪ {false} = {x =̂ 2, false}

τ−({x = 2}) ∪ τ−({x = 9}) ={τ+(x = 2)} ∪ {τ+(x = 9)} = {x =̂ 2} ∪ {false} = {x =̂ 2, false}

Finally, one important condition is that regarding the bridge relation (4.2.1i). Let us
show an example for the satisfaction of that condition. Let {x = 3, x = 4} and x = 2 be,



86 4. Abstract Diagnosis for tccp based on constraint system abstractions

respectively, C and a in condition (4.2.1i). We have that x = 2 /⇒ x = 3 and x = 2 /⇒ x = 4,
thus, for all c ∈ C, a /⇒ c. Furthermore, by definition of ⊬̃, it follows that x =̂ 2 ⊬̃ {x =̂

3, x =̂ 4} since x =̂ 2 /⇒ x =̂ 3 and x =̂ 2 /⇒ x =̂ 4. Thus, condition (4.2.1i) is satisfied.

Example 4.2.2 (Positive-Negative Abstraction)
Consider again, the Constraint System 1.4.3 and suppose we are interested only in the sign
of the variables. In this case, we design the upper-abstract constraint system in this way:
P̂N ∶= ⟨PN ,⇐,∧,∨, false, true,Var ,∃⟩ where PN = {posx, negx ∣ x ∈ Var}∪{false, true}.

The Hasse diagram of this abstract constraint system is:

false

posx negx

true

The abstract over-approximation τ+ is defined by cases as follows:

τ+(x > a) =

⎧⎪⎪
⎨
⎪⎪⎩

posx if a ≥ 0

false otherwise
τ+(x ≥ a) =

⎧⎪⎪
⎨
⎪⎪⎩

posx if a > 0

false otherwise

τ+(x < a) =

⎧⎪⎪
⎨
⎪⎪⎩

negx if a ≤ 0

false otherwise
τ+(x ≤ a) =

⎧⎪⎪
⎨
⎪⎪⎩

negx if a < 0

false otherwise

τ+(l < x < u) = false

τ+(x = a) = false

τ+(false) = false

τ+(true) = true

This abstraction keeps the information regarding the sign of variables, but not the
concrete value of them. The corresponding lower-abstract constraint system is P̌N ∶=

⟨℘(PN),⊆,∪,∩,PN ,∅,Var ,∃⟩ with the associated under-approximating function τ−, de-
fined as τ−(C) = ⋃c∈C τ

+(c).
The external operator ×̂ is defined as c ×̂ d̂ = τ+(c) ∧ d̂, while ×̌ is defined as c ×̌ ď =

τ−({c})∪ď. Thus, conditions (4.2.1a) and (4.2.1b) follows immediately. The bridge relation
⊢̃ is defined as â ⊢̃ B̌ ⇐⇒ ∃b̂ ∈ B̌. â⇒ b̂. It is easy to see that also the rest of conditions
hold.

As in the previous example, we illustrate the satisfaction of the most interesting con-
ditions by means of some instantiations. Let x ≥ 2 and x > 7 be a and b in condition
(4.2.1c):

τ+(x ≥ 2 ∧ x > 7) = τ+(x > 7) = posx

τ+(x ≥ 2) ∧ τ+(x > 7) = posx ∧ posx = posx

Now, consider two cases that reach the false abstract constraint:

τ+(x ≥ 1 ∧ x = 1) = τ+(x = 1) = false

τ+(x ≥ 1) ∧ τ+(x = 1) = posx ∧ false = false
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τ+(x ≥ 4 ∧ x ≤ −3) = τ+(false) = false

τ+(x ≥ 4) ∧ τ+(x ≤ −3) = posx ∧ negx = false

Similarly to the previous example, the condition (4.2.1d) follows immediately from the
definition of the function τ− because we have that τ−({c}) = {τ+(c)} for all c ∈ L.

Finally, let us show two instances of the condition (4.2.1i). Let {x = 2} and x > 2 be
C and a in the condition, respectively. Then, it is easy to check that x > 2 ⊬ x = 2 and
posx ⊬̃ {false}. Now, let C = {x < −3}, then x > 2 ⊬ x < −3 and posx ⊬̃ {negx}. Thus,
condition (4.2.1i) is satisfied in both cases.

In the following example, we show how to approximate streams, used to model imperative-
style variables (see Section 2.3).

Example 4.2.3 (Stream Abstraction)

Consider a domain composed by the elements fail , ok , stop, true and false. With ∧ we
denote the conjunction in this domain. The order relation is the one represented in the
following Hasse diagram.

false

fail ∧ ok fail ∧ stop ok ∧ stop

fail ok stop

true

In this case, the concrete constraint system is the Herbrand one (see 1.4.2) where
the terms are the values in the given domain. Due to its simplicity, its upper-abstract
counterpart coincides with the concrete constraint system itself, while the lower-abstract
counterpart is simply the extension of the concrete constraint system to sets of constraints.
Therefore, conditions 4.2.1 hold directly.

As already mentioned in Section 2.3, in tccp the store is monotonic, thus, we need to
use streams to model the imperative-style variables [43]. In this case we need two levels of
abstraction: one for the informational content (the constraints appearing in the stream)
and one for the structure of the stream. In order to make this abstraction effective it is
necessary to store both the last instantiated value in the stream, and the link between the
stream and the name of its tail, which could be instantiated afterward. As in the previous
examples, the under-approximation is defined simply as the natural extension of τ+ to sets
of constraints as streams.

For example, the positive abstraction for the stream s = [fail ∣s′] with s′ = [ok ∣s′′] is
(s=̇ok) ∧ (s & s′′), where =̇ associates each stream to his last instantiated value, while &

relates each stream with his tail. When also s′′ is instantiated, namely s′′ = [stop∣s′′′], the
abstraction of s becomes (s=̇stop) ⊗̂ (s & s′′′).

It can be easily noticed that, if the conditions listed in 4.2.1 hold for the underlying
abstract constraint system, they will also hold for the correspondent stream framework.
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4.2.2 Abstraction of information in conditional traces

In this section we introduce the abstract version of the conditional traces. In the se-
quel, all definitions are parametric w.r.t. an upper-abstract cylindric constraint system
Ĉ = ⟨Ĉ, ⪯̂, ⊗̂, ⊕̂, ˆfalse, ˆtrue,Var , ∃̂⟩ and a lower-abstract cylindric constraint system Č =

⟨Č, ⪯̌, ⊗̌, ⊕̌, ˇfalse, ˇtrue,Var , ∃̌⟩.

As in Chapter 3, we denote by ε the empty sequence and by s1 ⋅ s2 the concatenation
of two sequences s1, s2. We also abuse notation and, given a set of sequences S, by s1 ⋅ S
we denote {s1 ⋅ s2 ∣ s2 ∈ S}.

The idea is to associate an (abstract) condition to each state with approximated in-
formation in the stores and in the conditions.

Definition 4.2.4 (Abstract condition) An abstract condition η̃ over an upper-abstract
constraint system Ĉ and a lower-abstract constraint system Č is a pair η̃ = (η̂, η̌) where

• η̂ ∈ Ĉ is called abstract positive condition, and
• η̌ ∈ Č is called abstract negative condition.

An abstract condition is valid when η̂ ≠ ˆfalse, η̌ ≠ ˇtrue, and η̂ ⊬̃ η̌. We denote Λ̃C the set
of all valid conditions and ∆̃C the subset of valid ones.

The conjunction of two abstract conditions η̃1 = (η̂1, η̌1) and η̃2 = (η̂2, η̌2) is defined
as η1 ⊗̂ η2 ∶= (η+1 ⊗̂ η

+
2 , η

−
1 ⊕̌ η

−
2 ). Two abstract conditions are called incompatible if their

conjunction is not valid.

An abstract store ĉ ∈ Ĉ is consistent with η̃, written ĉ ≫̃ η̃, if ĉ ⊬̃ η̂ and ĉ ⊗̂ η̂ ≠ ˆfalse.
Moreover, we say that ĉ satisfies η̃, written ĉ ⊫̃ η̃, when ĉ ⊢̂ η̂ and ĉ ⊬̃ η̌. We define the
existential quantification on conditions as ∃̃x η̃ ∶= (∃̂x η̂, ∃̌x η̌).

Given c ∈ C and (η+, η−) ∈ Λ̃C:

(η+, η−) is valid ⇐⇒ (τ+(η+), τ−(η−)) is (abstractly) valid (4.2.2)

c≫ (η+, η−) Ô⇒ τ+(c) ≫̃ (τ+(η+), τ−(η−)) (4.2.3)

c⊫ (η+, η−) Ô⇒ τ+(c) ⊫̃ (τ+(η+), τ−(η−)) (4.2.4)

Those properties follows directly from the definitions of ≫ and ⊫ (3.1.2), and from the
conditions listed in 4.2.1.

Let us define the abstract version of conditional state and conditional trace.

Definition 4.2.5 (Abstract conditional state) An abstract conditional state over an
upper-abstract constraint system Ĉ and a lower-abstract constraint system Č, is one of
the following constructs.

Abstract conditional store. A pair η̃ ↣ ĉ, for each η̃ ∈ Λ̃C and ĉ ∈ Ĉ.

Abstract stuttering. The construct stutt(η̌), for each η̌ ∈ Č such that η̌ ≠ ˇtrue.

End of a process. The construct ⊠.

In an abstract conditional store t̃ = η̃ ↣ ĉ, ĉ is the abstract store of t̃.

We say that η̃ ↣ ĉ is valid if η̃ is valid.
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Definition 4.2.6 (Abstract conditional trace) An abstract conditional trace is a se-
quence of abstract conditional states of the form: t̃1 . . . t̃n . . . , possibly ended with ⊠, which
respects the following properties:

Monotonicity. For each t̃i = η̃i ↣ ĉi and t̃j = η̃j ↣ ĉj such that j ≥ i, ĉj ⊢̂ ĉi.
Consistency. For each t̃i = η̃i ↣ ĉi and t̃i+1 either of the form (η̂i+1, η̌i+1) ↣ ĉi+1 or

stutt(η̌i+1), we have that ĉi ⊬̃ η̌i+1.

We denote by M± the set of all maximal abstract conditional traces.
(M±, ⊑, ⊔, ⊓, M±, {ε}) is the lattice composed by sets of maximal abstract traces. It can
be noticed that the order relation is the same defined for the concrete conditional traces.

Let us formalize the relation between concrete conditional traces and abstract condi-
tional traces. Intuitively, we abstract the positive information in the concrete traces with
the over-approximation function τ+ and the negative one with the under-approximation
one τ−. In this way, abstract conditional traces contain only approximated information in
abstract conditions and stores.

Definition 4.2.7 (Abstraction of maximal conditional traces) Let τ+∶C → Ĉ and
τ−∶ ℘(C) → Ĉ be, respectively, the over and the under approximating functions. Given
r ∈ M, we define its abstraction α± as follows:

α±(ε) = ε (4.2.5)

α±(⊠) = ⊠ (4.2.6)

α±((η+, η−) ↣ c ⋅ r) = (τ+(η+), τ−(η−)) ↣ τ+(c) ⋅ α±(r) (4.2.7)

α±(stutt(η−) ⋅ r) = stutt(τ−(η−)) ⋅ α±(r) (4.2.8)

The corresponding concretization function, given an abstract conditional trace returns the
associated set of concrete conditional traces:

γ±(ε) = {ε} (4.2.9)

γ±(⊠) = {⊠} (4.2.10)

γ±((η̂, η̌) ↣ ĉ ⋅ r̄) = ⊔{(η+, η−) ↣ c ⋅ r ∣ τ+(η+) = η̂, τ−(η−) = η̌, τ+(c) = ĉ, r ∈ γ±(r̄)}
(4.2.11)

γ±(stutt(η̌) ⋅ r̄) = ⊔{stutt(η−) ⋅ r ∣ τ−(η−) = η̌, r ∈ γ±(r̄)} (4.2.12)

Let r ∈ M, it follows directly from property 4.2.4:

r is self-sufficient Ô⇒ α̃(r) is astractly self-sufficient (4.2.13)

We abuse in notation by calling (α±, γ±) the two functions that relate sets of concrete
traces to sets of abstract traces in the following way:

α±(R) = ⊔{α±(r) ∣ r ∈ R}

γ±(R̄) = ⊔{γ±(r̄) ∣ r̄ ∈ R̄}

The domain of maximal set of concrete conditional traces and the domain of maxi-
mal sets of abstract conditional traces are related by a Galois Insertion as stated by the
following lemma.

Lemma 4.2.8 The pair of functions (α±, γ±) is a Galois Insertion

(M, ⊑, ⊔, ⊓, M, {ε}) −−−−−→Ð→←−−−−−−
α±

γ±

(M±, ⊑, ⊔, ⊓, M±, {ε})
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4.2.3 Abstraction of the conditional traces structure

Abstracting the information contained in the traces, often leads to abstract traces that
present equal consecutive conditional states. For instance, consider the concrete trace
r = (x > 0,∅) ↣ x > 0 ⋅ (x > 2,∅) ↣ x > 2 ⋅ (x > 5,∅) ↣ x > 5 ⋅ ⊠ together with the
positive/negative approximations defined in Example 4.2.2, the result is the trace α±(r) =
(posx,∅) ↣ posx ⋅(posx,∅) ↣ posx ⋅(posx,∅) ↣ posx ⋅⊠. Therefore, we can think on collapse
these consecutive states in an unique one to obtain a more compact representation, for
instance a trace on the form (posx,∅) ↣ posx ⋅ ⊠. However, due to the particularly strong
synchronization notion of the language, this information is not enough for our verification
and analysis purposes. As already noticed in [4], the loss of synchronization in other ccp
languages just implies a loss of precision, but in the case of tccp, due to the maximal
parallelism, it would imply a loss of correctness. Thus, we need to know how long each
fragment of the computation is. The idea to solve this problem is to associate a natural
number to each abstract conditional tuple. This allows us to keep synchronization among
processes. For instance in the previous example we obtain an abstract trace of the form
[(posx,∅) ↣ posx]

3 ⋅ ⊠.

This observation lead us to the notion of compact abstract conditional trace:

Definition 4.2.9 (Compact abstract conditional trace) A compact abstract condi-
tional trace (briefly compact abstract trace) is a trace, possibly ended with ⊠, of abstract
states with a natural number mi associated: t̃m1

1 . . . t̃mnn . . . , such that for each t̃mii and t̃
mj
j

with i > j, t̃i ≠ t̃j, i.e., two consecutive states must be different. In addition, a compact
abstract trace satisfies the properties of monotonicity and consistency in Definition 4.2.6
must hold.

It can be noticed that, if the associated number is 0, the tuple corresponds to the empty
sequence ε. Furthermore, to obtain always a well formed compact abstract conditional
trace, we assume that the concatenation of two equal abstract conditional states such as
[(η̂, η̌) ↣ ĉ]n ⋅ [(η̂, η̌) ↣ ĉ]m is interpreted as the single abstract conditional state [(η̂,
η̌) ↣ ĉ]n+m.

Let r̃, r̃1 and r̃2 be compact abstract traces and t̃n a state with a natural number
associated, we define the ordering of compact abstract traces as

ε < ⊠ ≤ r̃ ∀r̃ ≠ ε

t̃n ⋅ r̃1 ≤ t̃
n ⋅ r̃2 ⇐⇒ r̃1 ≤ r̃2

t̃n ≤ t̃m ⋅ r̃ ⇐⇒ n <m

We denote by M̃
±

the set of all compact abstract traces.
It is easy to see that (M̃

±
, ≤, ⋁, ⋀, M̃±, {ε}) is a complete lattice, where the relation ≤

is lifted to sets of traces in the following way: given R̃1, R̃2 ∈ M̃
±
, R̃1 ≤ R̃2 ⇐⇒ ∀r̃1 ∈

R̃1 ∃r̃2 ∈ R̃2 such that r̃1 ≤ r̃2.

In the following, we state formally the relation between the abstract traces of Defini-
tion 4.2.6 and the compact ones. To this end, we need to define two auxiliary functions:
the function κ computes a compact abstract trace from an abstract one, whereas the
function κ−1 gets the correspondent abstract trace from a compact one.
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Definition 4.2.10 The function κ∶M± ↦ M̃
±
, given an abstract trace r ∈ M±, collapses

all its equal consecutive abstract conditional states in the following way:

κ(ε) ∶= ε (4.2.14)

κ(⊠) ∶= ⊠ (4.2.15)

κ(η̃ ↣ ĉ ⋅ r̄) ∶= {
[η̃ ↣ ĉ]n+1 ⋅ r̃′ if κ(r) = [η̃ ↣ ĉ]n ⋅ r̃′ and n > 0

[η̃ ↣ ĉ]1 ⋅ κ(r) otherwise
(4.2.16)

κ(stutt(η̌) ⋅ r) ∶= {
[stutt(η̌)]n+1 ⋅ r̃′ if κ(r̄) = [stutt(η̌)]n ⋅ r̃′ and n > 0

[stutt(η̌)]1 ⋅ κ(r) otherwise
(4.2.17)

The function κ−1 ∶M̃
±
↦M±, given a compact abstract conditional trace r ∈ M̃

±
, expands

each abstract conditional state according to its associated number:

κ−1 (ε) ∶= ε (4.2.18)

κ−1 (⊠) ∶= ⊠ (4.2.19)

κ−1 ([η̃ ↣ ĉ]n ⋅ r̃) ∶= η̃ ↣ ĉ . . . η̃ ↣ ĉ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

⋅κ−1 (r̃) (4.2.20)

κ−1 ([stutt(η̌)]n ⋅ r̃) ∶= stutt(η̌) . . . stutt(η̌)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

⋅κ−1 (r̃) (4.2.21)

It is worth noticing that κ ○κ−1 = κ−1 ○κ = id and κ and κ−1 are idempotent.

We abuse in notation by denoting as (κ,κ−1 ) the pair of functions that relate sets of
abstract traces to sets of compact abstract traces in the following way:

κ(R) = ⋁{κ(r) ∣ r ∈ R}

κ−1 (r̃) = ⊔{κ−1 (r̃) ∣ r̃ ∈ r̃}

Lemma 4.2.11 The pair of functions (κ,κ−1 ) is an order-preserving isomorphism

(M±, ⊑, ⊔, ⊓, M±, {ε}) −−−−−−→Ð→←←Ð−−−−−−
κ

κ−1

(M̃
±
, ≤, ⋁, ⋀, M̃±, {ε})

By composition of the Galois Insertions (α±, γ±) and the isomorphism (κ,κ−1 ) we obtain

(M, ⊑) −−−−−→Ð→←−−−−−−
α±

γ±

(M±, ⊑) −−−−−−→Ð→←←Ð−−−−−−
κ

κ−1

(M̃
±
, ≤) (4.2.22)

We denote this compositions as α̃ = α± ○κ and γ̃ = κ−1 ○γ±, obtaining the following
Galois Insertion:

(M, ⊑, ⊔, ⊓, M, {ε}) −−−−→Ð→←−−−−−
α̃

γ̃
(M̃

±
, ≤, ⋁, ⋀, M̃±, {ε}) (4.2.23)

This abstraction can be systematically lift to the domain of interpretations: I −−−−→Ð→←−−−−−
α̃

γ̃

[PC → M̃
±
]. Elements of I± ∶= [PC → M̃

±
] are called abstract interpretations.

Let us show some examples of the application of the abstraction function α̃.
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Example 4.2.12

We apply the abstraction function α̃ to the fixpoint semantics F JDK computed in Ex-
ample 3.1.22 by using the abstract constraint system F̂D(5) (Example 4.2.1). Let us
consider, first, the concrete trace r̄ ∶= (x = 4,∅) ↣ x = 4 ⋅ (x = 4,∅) ↣ x = 4. By applying to
r̄ the abstraction function α± it is easy to see that we obtain the following abstract trace
α±(r̄) ∶= (x =̂ 4,∅) ↣ x =̂ 4 ⋅ (x =̂ 4,∅) ↣ x =̂ 4, and, by further applying κ we obtain the
compact abstract trace κ(α±(r̄)) ∶= [(x =̂ 4,∅) ↣ x =̂ 4]2. Now, we apply α̃ to the result
of the fixpoint semantics F JDK.

α̃(F JDK)

= {
p(x) ↦ κ(α±( {(stutt({x = 4}))n ⋅ r̄ ⋯ r̄ ⋯ ∣n ∈ N} ⊔

{stutt({x = 4}) ⋯ stutt({x = 4}) ⋯}

))

= {
p(x) ↦ {κ(α±((stutt({x = 4}))n ⋅ r̄ ⋯ r̄ ⋯)) ∣n ∈ N} ∨

{κ(α±(stutt({x = 4}) ⋯ stutt({x = 4}) ⋯))}

[ by Definition 4.2.7 ]

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

p(x) ↦ {κ((stutt(τ−({x = 4})))n⋅
(τ+(x = 4), τ−(∅)) ↣ τ+(x = 4) ⋯ (τ+(x = 4), τ−(∅)) ↣ τ+(x = 4) ⋯) ∣ n ∈ N} ∨

{κ(stutt(τ−({x = 4})) ⋯ stutt(τ−({x = 4})) ⋯)}

[ by Definitions of τ+ and τ− in Example 4.2.1 ]

= {
p(x) ↦ {κ((stutt({x =̂ 4}))n ⋅ (x =̂ 4,∅) ↣ x =̂ 4 ⋯ (x =̂ 4,∅) ↣ x =̂ 4 ⋯) ∣n ∈ N} ∨

{κ(stutt({x =̂ 4}) ⋯ stutt({x =̂ 4}) ⋯)}

[ by Definition of κ (4.2.14) ]

= {
p(x) ↦ {[stutt({x =̂ 4})]n ⋅ [(x =̂ 4,∅) ↣ x =̂ 4]+∞ ∣n ∈ N} ∨

{[stutt({x =̂ 4})]+∞}

The abstract semantics shows that the procedure p(x) loops on the store x =̂ 4 if the
guard x =̂ 4 is entailed by the current store, otherwise it waits for a finite or infinite
time for the guard to be entailed and eventually loops on the store x =̂ 4. Notice that
the function κ allows us to effectively collapse the equal consecutive states and obtain a
compact representation for the abstract traces.

We show a second abstraction example for the semantics.

Example 4.2.13

We apply the abstraction function α̃ to the fixpoint semantics F JDK computed in Exam-
ple 3.1.21 by using the abstract constraint system defined in 4.2.2.

α̃(F JDK) =
⎧⎪⎪
⎨
⎪⎪⎩

{q(x, y) ↦ ⋁{[( ˆtrue,{posx}) ↣ ˆtrue]n ⋅ [(posx,∅) ↣ posx ⊗̂ negy]
1 ⋅ ⊠ ∣ n ∈ N}

∨{[( ˆtrue,{posx}) ↣ ˆtrue]+∞}

Notice that, due to the abstraction of the constraint system, we lose the real content of
the global store, namely we do not have the information that x > 2 and y < 0 anymore.
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4.3 Induced Abstract Semantics

In general, it is not possible to compute the fixpoint semantics F in finite time. Thus,
given a set of declarations D we cannot just compute α̃(F JDK) to to obtain the abstract
semantics of D.

For this reason, in this section, we present an abstract semantics for tccp, which is ob-
tained by abstracting the small-step semantics of Section 3.1 with the abstraction frame-
work defined in Section 4.2. Since we will use standard abstract interpretation results, the
obtained semantics turns out to be the best correct approximation of F in the domain of
compact abstract conditional traces.

Let us introduce, first, the abstract counterpart of the concrete auxiliary semantic
functions introduced in Section 3.1.2. We show that these abstract functions are a correct
approximation of the concrete ones. This property is called local correctness of the abstract
operators and it is necessary to show that the final abstract semantics (Theorem 4.A.1) is
(globally) correct.

The abstract propagation operator ↓̃ is a partial function M̃
±
× Ĉ → M̃

±
which prop-

agates the information of an abstract constraint in an abstract trace and checks for the
consistency of the new information with the conditional states in the abstract trace.

Definition 4.3.1 (Abstract propagation operator) Let r̃ ∈ M̃
±

and ĉ ∈ Ĉ. We define
the abstract propagation of ĉ in r̃, written r̃↓̃ĉ, as ⊠↓̃ĉ = ⊠, ε↓̃ĉ = ε and

([(η̂, η̌) ↣ d̂]n ⋅ r̃′)↓̃ĉ =

⎧⎪⎪
⎨
⎪⎪⎩

[(ĉ ⊗̂ η̂, η̌) ↣ ĉ ⊗̂ â]n ⋅ (r̃′↓̃ĉ) if ĉ ≫̃ (η̂, η̌), ĉ ⊗̂ d̂ ≠ ˆfalse

[(ĉ ⊗̂ η̂, η̌) ↣ ˆfalse]1 if ĉ ≫̃ (η̂, η̌), ĉ ⊗̂ d̂ = ˆfalse

([stutt(η̌)]n ⋅ r̃′)↓̃ĉ = [stutt(η̌)]n ⋅ (r̃′↓̃ĉ) if ĉ ⊬̃ η̌

The abstract propagation operator is correct w.r.t. the concrete one, as formally stated
by the following lemma.

Lemma 4.3.2 Let r ∈ M and c ∈ C, then α̃(r↓c) = α̃(r)↓̃τ+(c).

The following definition extends the notion of compatibility (Definition 3.1.9) to ab-
stract traces.

Definition 4.3.3 (ĉ-compatible) r̃ ∈ M̃± is said to be abstractly compatible w.r.t. ĉ ∈ Ĉ
(r̃ is ĉ-compatible) if, for each [(η̂, η̌) ↣ d̂]n in r̃, ĉ ≫̃ (η̂, η̌), and for each [stutt(η̌)]n in
r̃, ĉ ⊬̃ η̌.

A trace r̃ is not ĉ-compatible when ĉ is in contradiction with a condition in r̃, in this
case ĉ↓̃r̃ is not defined.

The following lemma follows directly from condition (4.2.1i) and Equation (4.2.3).

Proposition 4.3.4 Given r ∈ M and c ∈ C,

r is c-compatibleÔ⇒ α̃(r) is abstractly τ+(c)-compatible.

The abstract parallel composition operator combines two abstract conditional traces in
terms of maximal parallelism. As its concrete counterpart (Definition 3.1.10), it checks
the satisfiability of the conditions and the consistency of the resulting stores.
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Definition 4.3.5 (Abstract parallel composition) The abstract parallel composition
partial operator ∥̃∶M̃± × M̃± → M̃± is the commutative closure of the following partial
operation defined by structural induction as: r̃ ∥̃ ε ∶= r̃, r̃ ∥̄ ⊠ ∶= r and, if n ≤m,

([stutt(η̌1)]
n ⋅ r̃′1) ∥̃ ([stutt(η̌2)]

m ⋅ r̃′2) ∶= [stutt(η̌1 ⊕̌ η̌2)]
n ⋅ (r̃′1 ∥̃ [stutt(η̌2)]

m−n ⋅ r̃′2)

Moreover, if η̃1 ⊗̃ η̃2 is valid, r̃′1 is ĉ2-compatible, r̃′2 is ĉ1-compatible and n ≤m, then

([η̃1 ↣ ĉ1]
n ⋅ r̃′1) ∥̃ ([η̂2 ↣ ĉ2]

m ⋅ r̃′2) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

[η̂1 ⊗̃ η̂2 ↣ ĉ1 ⊗ ĉ2]
n ⋅

((r′1↓̃ĉ2) ∥̄ (([η̂2 ↣ ĉ2]
m−n ⋅ r′2)↓̃ĉ1)) if ĉ1 ⊗̂ ĉ2 ≠ ˆfalse

[η̂1 ⊗̃ η̂2 ↣ ˆfalse]1 ⋅ ⊠ if ĉ1 ⊗̂ ĉ2 = ˆfalse

Finally, if η̂+1 ⊬̃ η̌2 and r̃′2 is ĉ1-compatible, then

([η̃1 ↣ ĉ1]
n ⋅ r̃′1) ∥̃ ([stutt(η̌2)]

m ⋅ r̃′2) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

[(η̂1, η̌1 ⊕̌ η̌2) ↣ ĉ1]
n ⋅ (r̃′1 ∥̄ (([stutt(η̌2)]

m−n ⋅ r̃′2)↓̃ĉ1)) if n ≤m

[(η̂1, η̌1 ⊕̌ η̌2) ↣ ĉ1]
m ⋅ ([η̃1 ↣ ĉ1]

n−m ⋅ r̃′1 ∥̄ (r̃′2↓̃ĉ1)) if m < n

Similarly to the concrete case, ∥̃ is commutative and associative and ↓̃ distributes over
∥̃ (i.e., (r̃1 ∥̃ r̃2)↓̃ĉ = (r̃1↓̃ĉ) ∥̃ (r̃2↓̃ĉ)). It is worth noting that, if one of the traces is not
compatible with the propagated abstract constraint, the abstract parallel composition is
not defined.

The following lemma states the soundness of ∥̃ w.r.t. the concrete parallel composition
operator (Definition 3.1.10).

Lemma 4.3.6 Let r1, r2 ∈ M, α̃(r1 ∥̄ r2) = α̃(r1) ∥̃ α̃(r2) holds.

The abstract hiding operator ∃̃ ∶ V ×M̃± → M̃± hides the information regarding a given
variable in an abstract conditional trace.

Definition 4.3.7 (Abstract hiding operator) Given r̃ ∈ M̃± and x ∈ V, we define the
hiding of x in r̃, written ∃̃x r̃, by structural induction:

∃̃x r̃ ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

[(∃̂x η
+, ∃̌x η

−) ↣ ∃̂x â]
n ⋅ ∃̃x r̃

′ if r̃ = [(η̂, η̌) ↣ â]n ⋅ r̃′

[stutt(∃̌x η̌)]
n ⋅ ∃̃x r̃

′ if r̃ = [stutt(η̌)]n ⋅ r̃′

r̃ if r̃ = ε or r̃ = ⊠

The abstract hiding operator ∃̃ is sound w.r.t. its concrete counterpart (Defini-
tion 3.1.12).

Lemma 4.3.8 Given r ∈ M and x ∈ Var, α̃(∃̄x r) = κ(∃̃x α̃(r)).

As in the concrete case, we distinguish two special classes of abstract conditional traces.
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Definition 4.3.9 (Abstractly Self-sufficient and x-self-sufficient conditional trace)
An abstract trace r̃ ∈ M̃± is said to be abstractly self-sufficient if the first condition is ( ˆtrue,

ˇfalse) and, for each t̃i = [(η̂i, η̌i) ↣ ĉi]
n and t̃i+1 = [(η̂i+1, η̂i+1) ↣ ĉi+1]

n, ĉi ⊫̃ ηi+1. In other
words, each abstract store (abstractly) satisfies the successive abstract condition.

Moreover, r̃ is abstractly self-sufficient w.r.t. x ∈ V (x-self-sufficient) if ∃̃Var∖{x} r̃ is
self-sufficient.

It follows directly from Lemma 4.3.8 and Equation (4.2.13) that, given a conditional
trace r ∈ M and a variable x ∈ Var :

r is x-self-sufficient Ô⇒ α̃(r) is abstractly x-self-sufficient (4.3.1)

Now that we have introduced all the essential auxiliary operator, we can derive the
optimal abstract version D±JDK of DJDK simply as

D±JDK ∶= α̃ ○DJDK ○ γ̃

It turns out (Theorem 4.A.1) that for a given abstract interpretation I±:

D±JDKI± = λp(x).⋁p(x)∶−A∈DA
±JAKI± (4.3.2)

where A± is defined by structural induction on the syntax in a similar way as the concrete
version.

A±JskipKI± ∶= ⊠ (4.3.3)

A±Jtell(c)KI± ∶= [( ˆtrue, ˇfalse) ↣ τ+(c)]1 ⋅ ⊠ (4.3.4)

A±JA ∥ BKI± ∶= ⋁{r̃A ∥̃ r̃B ∣ r̃A ∈ A±JAKI± , r̃B ∈ A±JBKI±} (4.3.5)

A±J∃xAKI± ∶= ⋁{ ∃̃x r̃ ∣ r̃ ∈ A±JAKI± , r̃ is abstracly x-self-sufficient} (4.3.6)

A±Jp(z)KI± ∶= ⋁{[( ˆtrue, ˇfalse) ↣ ˆtrue]1 ⋅ r̃ ∣ r̃ ∈ I±(p(z))} (4.3.7)

A±J
n

∑
i=1

ask(ci) → AiKI± ∶= lfp
M̃

± λR̃. (([stutt(τ−({c1, . . . , cn}))]
1 ⋅ R̃) ∨ (4.3.8)

⋁{[(τ+(ci), ˇfalse) ↣ τ+(ci)]
1 ⋅ (r̃↓̃τ+(ci)) ∣1 ≤ i ≤ n, r̃ ∈ A

±JAiKI± , r̃ τ+(ci)-compatible})

(4.3.9)

A±Jnow c then A else BKI± ∶=

{[(τ+(c), ˇfalse) ↣ τ+(c)]1 ⋅ ⊠ ∣ ⊠ ∈ A±JAKI±} ∨ (4.3.10)

⋁{[(c ×̂ η̂, η̌) ↣ c ×̂ d̂]n ⋅ (r̃↓̃τ+(c)) ∣ [(η̂, η̌) ↣ d̂]n ⋅ r̃ ∈ A±JAKI± ,

c ×̂ d̂ ≠ ˆfalse , c ×̂ η̂ ⊬̃ η̌, r̃ τ+(c)-compatible} ⊔

(4.3.11)

⋁{[(c ×̂ η̂, η̌) ↣ ˆfalse]1} ⋅ ⊠ ∣ [(η̂, η̌) ↣ d̂]n ⋅ r̃ ∈ A±JAKI± ,

c ×̂ d̂ = ˆfalse, c ×̂ η̂ ⊬̃ η̌, r̃ τ+(c)-compatible} ∨

(4.3.12)

⋁{[(τ+(c), η̌) ↣ τ+(c)]1 ⋅ [stutt(η̌)]n ⋅ κ(r̃↓̃τ+(c)) ∣

[stutt(η̌)]n+1 ⋅ r̃ ∈ A±JAKI± , τ+(c) ⊬̃ η̌, r̃ τ+(c)-compatible} ∨

(4.3.13)

⋁{[( ˆtrue, τ−(c)) ↣ ˆtrue]1 ⋅ ⊠ ∣ ⊠ ∈ A±JBKI±} ∨ (4.3.14)
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⋁{[(η̂, c ×̌ η̌) ↣ â]n ⋅ r̃ ∣ [(η̂, η̌) ↣ â]n ⋅ r̃ ∈ A±JBKI± , η̂ ⊬̂ τ−({c})} ∨ (4.3.15)

⋁{[( ˆtrue, c ×̌ η̌) ↣ ˆtrue]1 ⋅ [stutt(η̌)]n ⋅ r̃ ∣ [stutt(η̌)]n+1 ⋅ r̃ ∈ A±JBKI±} (4.3.16)

Abstract interpretation theory assures that F±JDK ∶= lfp D±JDK is the best correct
approximation of F JDK.2

Let us remark that the considered domain is not noetherian. In fact, it is easy to
build infinite ascending chains as {[η̃ ↣ â]1} ⊆ ⋅ ⋅ ⋅ ⊆ {[η̃ ↣ â]1, . . . , [η̃ ↣ â]n} ⋅ ⋅ ⋅ ⊆ {[η̃ ↣
â]1, . . . , [η̃ ↣ â]+∞} . . . . For this reason, we can not guarantee that the fixed point can be
reached in a finite number of steps. However, starting from a finite (abstract) interpreta-
tion, each single iteration terminates in finite time. This makes the semantics suitable for
abstract diagnosis (see Section 4.4).

Let us show some examples of the calculus of the abstract semantics F±.

Example 4.3.10
Consider the set of declaration of Example 3.1.22: D ∶= {p(x) ∶− ask(x = 4) → p(x)}.

The abstract semantics of the agent ask(x = 4) → p(x) by using the abstraction over
constraints F̂D(5) defined in Example 4.2.1 is computed as follows.

A±Jask(x = 4) → p(x)KI±

= lfp
M̃

± λR̃. (([stutt(τ−({x = 4}))]1 ⋅ R̃) ∨

⋁{[(τ+(x = 4), τ−(∅)) ↣ τ+(x = 4)]1 ⋅ (r̃↓̃τ+(x=4)) ∣ r̃ ∈ A
±Jp(x)KI±})

= lfp
M̃

± λR̃. (([stutt({x =̂ 4})]1 ⋅ R̃) ∨

⋁{[(x =̂ 4,∅) ↣ x =̂ 4]1 ⋅ (r̃↓̃x=̂4) ∣ r̃ ∈ A
±Jp(x)KI±})

= {[stutt({x =̂ 4})]+∞} ∨

⋁{[stutt({x =̂ 4})]n ⋅ [(x =̂ 4,∅) ↣ x =̂ 4]2 ⋅ r̃ ∣ r̃ ∈ I±(p(x)), n ∈ N}

The iterates of D±JDK are

D±JDK↑1 = {
p(x) ↦ {[stutt({x =̂ 4})]n ⋅ [(x =̂ 4,∅) ↣ x =̂ 4]2 ∣n ∈ N} ⊔

{[stutt({x =̂ 4})]+∞}

D±JDK↑2 = {
p(x) ↦ {[stutt({x =̂ 4})]n ⋅ [(x =̂ 4,∅) ↣ x =̂ 4]4 ∣n ∈ N} ⊔

{[stutt({x =̂ 4})]+∞}

⋮

F±JDK = {
p(x) ↦ ⋁{[stutt({x =̂ 4})]n ⋅ [(x =̂ 4,∅) ↣ x =̂ 4]+∞ ∣n ≥ 0}} ∨

{[stutt({x =̂ 4})]+∞}

Comparing this result to the abstraction α(F JDK) of Example 4.2.12, it is worth
noticing that α(F JDK) = F±JDK, i.e., the abstract fixpoint coincides with the abstraction
of the concrete fixpoint.

2Correct means α̃(F±JDK) ≤ F JDK and best means that is the minimum (w.r.t. ≤) of all correct
approximations.



4.4. Abstract Diagnosis for tccp based on constraint system abstractions 97

Example 4.3.11

Consider Constraint System 1.4.3 and declaration D of Example 3.1.21. The first iteration
of the operator D gives rise to the following set:

D±JDK↑1 = {
{q(x, y) ↦ {[(posx,∅) ↣ posx ⊗̂ negy]

1 ⋅ ⊠,

[( ˆtrue,{posx}) ↣ ˆtrue]1}

D±JDK↑2 =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

q(x, y) ↦ {[(posx,∅) ↣ posx ⊗̂ negy]
1 ⋅ ⊠} ∨

{[( ˆtrue,{posx}) ↣ ˆtrue]1 ⋅ [(posx,∅) ↣ posx ⊗̂ negy]
1 ⋅ ⊠} ∨

{[( ˆtrue,{posx}) ↣ ˆtrue]2}

⋮

D±JDK↑n =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

{q(x, y) ↦ {[(posx,∅) ↣ posx ⊗̂ negy]
1 ⋅ ⊠} ∨

{[( ˆtrue,{posx}) ↣ ˆtrue]n−1 ⋅ [(posx,∅) ↣ posx ⊗̂ negy]
1 ⋅ ⊠} ∨

{[( ˆtrue,{posx}) ↣ ˆtrue]n}

Finally, the limit of the computation is the following set:

F±JDK =
⎧⎪⎪
⎨
⎪⎪⎩

{q(x, y) ↦ ⋁{[( ˆtrue,{posx}) ↣ ˆtrue]n ⋅ [(posx,∅) ↣ posx ⊗̂ negy]
1 ⋅ ⊠ ∣ n ≥ 0}

∨ {[( ˆtrue,{posx}) ↣ ˆtrue]+∞}

Intuitively, the abstract behavior says that the program waits until x is positive. Then,
as soon as this information is (abstractly) entailed from the store, then the constraint negy
is added.

Notice that the guard in the (concrete) program is x > 2, so the abstract semantics is
less restricted than the concrete one.

Finally, if we compare this set with the abstraction α̃(F JDK) of Example 4.2.13, we
can see that α̃(F JDK) = F±JDK, i.e., the abstract fixpoint coincides with the abstraction
of the concrete fixpoint.

4.4 Abstract Diagnosis for tccp based on constraint system
abstractions

In this section we present some examples of the abstract diagnosis approach for tccp
introduced in Section 4.1. We use the abstraction framework of Section 4.2 and the
corresponding induced abstract semantics defined in Section 4.3. Therefore, specifications
are given in terms of sets of compact abstract conditional traces. Notice that, in this way,
it is possible to specify infinite behaviors just by using the index +∞ in a compact abstract
conditional state.

Let us recall that, although the domain of compact conditional abstract traces is not
noetherian, starting from a finite interpretation, a single step of the immediate conse-
quence operator D±JDK is computed in finite time. For this reason, the proposed abstract
diagnosis check for this domain is decidable if the given specification is finite.

The first example shows how we can deal with the constructors that introduce the non-
monotonic behavior of the system, in particular the now agent. This is a novel contribution
since, to our knowledge, the previous diagnosis proposals for the timed extensions of the
cc paradigm cannot address this difficulty.
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Example 4.4.1
We model a (simplified) time-out(n) process that checks during at most n times units if
the system emits a signal telling that the process evolves normally (system = ok). When
the signal arrives, the system emits the fact that there is no alert (alert = no)3. Consider
the following declarations:

d0 ∶∶= time-out(0 ) ∶−now system = ok then action else (ask(true) → time-out(0))

dn ∶∶= time-out(n) ∶−now system = ok then action else (ask(true) → time-out(n − 1))

daction ∶∶= action ∶− tell(alert = no)

When the time limit is reached (declaration d0), the system should set the signal alert to
yes (tell(alert = no)). However, we have introduced an error in the program, by recursively
invoking the process time-out(0) instead.

Due to the simplicity of the constraint system, the abstract domain coincides with the
concrete one, and the two external functions are the ⊕̂ and ⊕̌ operators.

Let us now consider the following specification. For d0 we expect that, if the ok signal
is present, then it ends with an alert = no signal, otherwise an alert should be emitted.
This is represented by two possible sequences, one with a condition where system = ok , and
a second one when system = ok is absent (i.e., a sequence that reasons with the absence
of information).

S±(time-out(0)) = { [(system = ok , ˇfalse) ↣ system = ok]1⋅

[( ˆtrue, ˇfalse)) ↣ system = ok ⊗̂ alert = no]1 ⋅ ⊠}

∪ {[( ˆtrue,{system = ok}) ↣ ˆtrue]1 ⋅ [( ˆtrue, ˇfalse) ↣ alert = yes]1 ⋅ ⊠}

The specification for dn is similar, but we add n sequences, since we have the possibility
that the signal arrives at each time instant before n.

S±(time-out(n)) = { [( ˆtrue,{system = ok}) ↣ ˆtrue]m⋅

[(system = ok , ˇfalse) ↣ system = ok]1⋅

[( ˆtrue, ˇfalse) ↣ system = ok ⊗̂ alert = no]1 ⋅ ⊠ ∣ 0 ≤m < n}

∪ {[( ˆtrue,{system = ok}) ↣ ˆtrue]n+1 ⋅ [( ˆtrue, ˇfalse) ↣ alert = yes]1 ⋅ ⊠}

S±(action) = {[( ˆtrue, ˇfalse) ↣ alert = no]1 ⋅ ⊠}

Now, when we compute D±J{d0}KS± we have:

{[(system = ok , ˇfalse) ↣ system = ok]1 ⋅ [( ˆtrue, ˇfalse) ↣ system = ok ⊗̂ alert = no]1 ⋅ ⊠}

∪ {[( ˆtrue,{system = ok}) ↣ ˆtrue]1 ⋅ [(system = ok , ˇfalse) ↣ system = ok]1⋅

[( ˆtrue, ˇfalse) ↣ system = ok ⊗̂ alert = no]1 ⋅ ⊠}

∪ {[( ˆtrue,{system = ok}) ↣ ˆtrue]2 ⋅ [( ˆtrue, ˇfalse) ↣ alert = no]1 ⋅ ⊠}

Due to the last sequence, D±J{d0}KS± /≤S±, so we conclude that d0 is (abstractly) in-
correct. This error is provoked by the recursive call in the else branch of d0. If we fix
the program by replacing d0 by d′0 where the recursive call is replaced by tell(alert = yes),
then D±J{d′0}KS± ≤ S

±, thus d′0 is abstractly correct.

3The classical time-out would restart the countdown by recursively calling time-out(n).
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The second example illustrates how one can work with the abstraction of the constraint
system, and also how we can take advantage of our abstract domain.

Example 4.4.2
Let us consider a system with a single declaration and the abstraction of the constraint sys-
tem that abstracts integer variables to a (simplified) interval-based domain with abstract
values {⊺,posx,negx, x>10, x≤10,�}.

d ∶∶= p(x) ∶− now (x>̇0) then ∃x′ (tell(x = [ ∣x′]) ∥ tell(x′ = [x + 1 ∣ ]) ∥ p(x′))

else ∃x′′ (tell(x = [ ∣x′′]) ∥ tell(x′′ = [x − 1 ∣ ]) ∥ p(x′′))

Again, we have to use streams to model the imperative-style variables [43]. In this way,
variable x in the program above is a stream that is updated with different values during
the execution. Following this idea, the abstraction for concrete streams is defined as the
(abstracted) last instantiated value in the stream. The concretization of one stream is
defined as all the concrete streams whose last value is a concretization of the abstract one.
We write a dot on a predicate symbol (e.g. =̇) to denote that we want to check it for the
last instantiated value of a stream.

We define the following intended specification to specify that, (a) if the value of x in
the initial call is greater than 10, then the last value of the stream (written ẋ) will always
be greater than 10; (b) if the value is negative, then the value is always negative

S±(p(x1) = {[(x1>̇10, ˇfalse) ↣ x>̇10]+∞} ∪ {[(negẋ,
ˇfalse) ↣ negẋ]

+∞}

The two abstract sequences represent infinite computations thanks to the +∞ index in the
last tuple. In other words, finite specifications that represent infinite computations can be
considered and effectively handled. In fact, we can compute D±J{d}KS± :

{{[(negẋ,
ˇfalse) ↣ posẋ]

1 ⋅ ([(ẋ>10, ˇfalse) ↣ ẋ>10]+∞↓̃posẋ
)}

∪ {[(negẋ,
ˇfalse) ↣ negẋ]

1 ⋅ [(negẋ,
ˇfalse) ↣ negẋ]

+∞}}
=

{{[(negẋ,
ˇfalse) ↣ posẋ]

1 ⋅ [(

posẋ
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
posẋ ⊗̂ ẋ>10, ˇfalse) ↣ posẋ ⊗̂ ẋ>10]+∞)}

∪ {[(negẋ,
ˇfalse) ↣ negẋ]

1negẋ ⋅ [(negẋ,
ˇfalse) ↣ negẋ]

+∞negẋ}}
=
{{[(posẋ,

ˇfalse) ↣ posẋ]
+∞} ∪ {[(negẋ,

ˇfalse) ↣ negẋ]
+∞negẋ}}

The third equality holds because posẋ entails x>̇10, so the merge of the two constraints
will be equal to posẋ.

Since D±J{d}KS± /≤ S± we can conclude that d is an incorrect declaration w.r.t. S±.
In addition, we can notice that S± contains an uncovered element that is a sequence that
cannot be derived by the semantics operator D±.

Our third example shows a system already studied in [51]. The most important dif-
ference w.r.t. the time-out example is that the control process of this example needs that
someone explicitly tells the system that an error has occurred by telling failure. Instead,
in the time-out example, the system is able to act (and maybe recover) when it detects
that something that should have happened, had not. In other words, the control example
does not handle absence of information, since non-monotonic operators are not considered
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there. We have implemented the example in tccp and we have checked that the same
results as in [51] can be achieved in our framework if we apply the same abstraction they
use: a depth(k) abstraction. This abstraction cuts the traces at a given depth k, this
corresponds to check for the interested property just up to a given time instant k. It can
be noticed that, by using this abstraction, the ability of checking infinite behaviors is lost.

Example 4.4.3
Let D be a set containing the following declarations (d1 and d2, respectively). The idea of
the system is to control, at each time instant, if a failure signal has arrived. In that case,
an action is taken (for instance just a constraint stop is added).

d1 ∶∶= control(i ,o) ∶−∃o′, i′ now i = [fail ∣ ] then (tell(i = [fail ∣i′]) ∥ action(o,o′))

else skip

∥ ask(true) → control(i′, o′)

d2 ∶∶= action(o,o′) ∶− tell(o = [stop∣o′])

The concrete domain for the constraint system is composed by the elements fail , stop,
true and false. The abstract setting is similar to the one in the previous example. Due
to the monotonicity of the store, we have to use streams to model the imperative-style
variables [43]. As in the previous example, we write a dot on a predicate symbol (e.g.
=̇) to denote that we want to check it for the last instantiated value of a stream. The
abstraction for concrete streams is defined as the last instantiated value in the stream (see
Example 4.2.3).

Let us now check that the action process finishes in one time instant. To this end,
we define the following specification: S±(action(x1, x2)) = {[( ˆtrue, ˇfalse) ↣ x1=̇stop]

1 ⋅ ⊠}.
If we compute one iteration of the semantic operator D± on the specification, we get
D±J{d2}KS± = {[( ˆtrue, ˇfalse) ↣ τ+(o = [stop∣o′])]1 ⋅ ⊠} = {[( ˆtrue, ˇfalse) ↣ o=̇stop]1 ⋅ ⊠},
thus we conclude that the declaration d2 is correct w.r.t S±.

Let us now define the specification for the control process:

S±(control(f, s)) ={ [( ˆtrue,{f =̇fail}) ↣ ˆtrue]n⋅

[(f =̇fail , ˇfalse) ↣ f =̇fail ⊗̂ ∃̂f ′(f
′=̇true)]1⋅

[( ˆtrue, ˇfalse) ↣ f =̇fail ⊗̂ ∃̂f ′(f
′=̇true ⊗̂ s=̇stop)]1 ⋅ ⊠ ∣ n ∈ N}

∪ {[( ˆtrue,{f =̇fail}) ↣ ˆtrue]+∞}

Note that this specification is infinite since the first set of traces ranges over natural
numbers. In order to make the abstract diagnosis process effective, one solution would
be to use our framework with a (much concrete) depth(k)abstraction (similar to what is
done in [51]) in order to check only up to a given time instant k. We remark that this
is not equivalent to model-check (for instance) an equivalent temporal property (written
in some temporal logic). We will overcome this problem in Chapter 5 where we define
an abstract diagnosis method for tccp by using temporal formulas as specifications. In
that framework, the above specification for control(f, s) is simply specified by the formula
◻(f =̇fail →̇ ◯2 s=̇stop) which says that always in the future if the last instantiated value
of f is fail then, after two instants of time, the last value of s becomes stop.
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4.5 Related Work

In [51], a first approach to the declarative debugging of a ccp language is presented. The
authors introduce a denotational semantics to reason about ntcc programs, and, in order
to make their debugging approach effective, they approximate the behavior of the program
by using an abstract domain which cut the infinite behavioral sequences at a given depth.
In [50], the same method is proposed for the utcc language.

This approach has some drawbacks. First of all, it does not cover the particular extra
difficulty of modeling the semantics of non-monotonic operators, common to all timed
concurrent constraint languages. As already pointed out, this ability is crucial in order to
model specific behaviors of reactive systems, such as timeouts or preemption actions (see
Example 4.4.1).

Second, infinite sequences are approximated by cutting them at a given depth. Thus,
it is not possible to verify with enough precision infinite behaviors which, in our opinion,
are essential in the context of reactive systems.

Furthermore, the concrete and abstract semantics used in [51, 50] are not condensed.
This might cause some practical problems if the considered underlying constraint system
is infinite. In fact, the immediate consequence operator can possibly generate an infinite
number of (finite) behavioral sequences making the diagnosis check not decidable.

These are the main reasons why our abstract diagnosis approach is significantly differ-
ent from the one presented in [51, 50].

The idea of using two different mechanisms for dealing with positive and negative
information in our abstraction scheme is inspired by [4]. There, a framework for the
abstract model checking of tccp programs based on a source-to-source transformation is
defined. In particular, it is defined a transformation from a tccp program P into a tccp
program P̄ that represents a correct abstraction of the original one (in the sense that
the semantics of P are included in the semantics of P̄ ). Instead, we define an abstract
semantics for the language. The upper- and lower-approximated versions of the entailment
relation are used in order to keep P̄ correct, but also precise enough.

4.6 Discussion on the results

In this chapter, we have first formally introduced a generic framework for the abstract
diagnosis of tccp programs, which is parametric w.r.t. the chosen abstract domain. Then,
we have instantiated this framework with a suitable abstract domain and the correspondent
abstract semantics which models the full tccp language and that is able to deal with infinite
computations.

Among other valuable facilities, abstract diagnosis supports the development of ef-
ficacious diagnostic tools that detect program errors automatically without having to
determine symptoms in advance.

Because of the compositional nature of the underlying concrete semantics, our pro-
posal can be used with partial specifications and also with partial programs. Obviously,
one cannot detect errors in process declarations involving processes which have not been
specified, but for the process declarations that involve processes that have a specification,
the check can be made, even if the whole program has not been written yet. With other
“global” approaches such programs could not be checked at all. This is particularly useful
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for applications, since the diagnosis could be used from the beginning of the development
phase. Moreover, it could be performed incrementally, thus the overall computational cost
can be parceled over time.

Nevertheless, the main drawback of abstract diagnosis (and in general of all approx-
imation based methods) is the loss of precision due to the semantics abstraction. In
fact, because of the approximation, it can happen that a (concretely) correct program is
marked as (abstractly) incorrect, generating a false positive. However, all concrete errors
are assured to be detected.

By instantiating the general abstract diagnosis framework with the abstract seman-
tics of Section 4.3 we obtain a new debugging method for tccp. Our method keeps the
information about infinite behavioral traces and it is able to deal with full tccp including
non-monotonic operators. In fact, differently from the approach presented in [51, 50], we
do not make any restriction on the program syntax. As we have said, these abilities are
crucial in order to model and verify interesting properties of reactive systems.

4.A Proofs

4.A.1 Proofs of Section 4.1

Theorem 4.1.3. Let D ∈ DΠ
C and Sα ∈ IA.

1. If there are no abstractly incorrect process declarations in D (i.e., DαJDKSα ≤ Sα),
then D is partially correct w.r.t. Sα (i.e., α(F JDK) ≤ Sα).

2. Let D be partially correct w.r.t. Sα. If D has abstract uncovered elements, then D
is not complete (i.e., Sα /≤ α(F JDK)).

Proof.
Point 1 By hypothesis, ∀r ∈ D. DαJ{r}KSα ≤ Sα. Hence DαJDKSα ≤ Sα, i.e., Sα is a

pre-fixpoint of DαJDK. Since α(F JDK) ≤ FαJDK = lfp DαJDK, by Knaster–Tarski’s
Theorem α(F JDK) ≤ FαJDK ≤ Sα. The thesis follows by definition of correctness.

Point 2 By construction, α ○DJDK ○ γ ≤ DαJDK, hence α ○DJDK ○ γ ○α ≤ DαJDK ○ α.
Since id ⊑ γ ○α, it holds that α ○DJDK ≤ α ○DJDK ○γ ○α and α ○DJDK ≤ DαJDK ○α.
Hence,

α(F JDK) = [ since F JDK is a fixpoint ]

α(DJDKF JDK) ≤ [ by α ○DJDK ≤ DαJDK ○ α ]

DαJDKα(F JDK) ≤ [ since DαJDK is monotone and D is partial correct ]

DαJDKSα

Now, if D has an abstract uncovered element e i.e., e ≤ Sα and e ∧DαJDKSα = �,
then e ∧ α(F JDK) = � and Sα /≤ α(F JDK). The thesis follows from definition of
completeness.

Theorem 4.1.4. Let r be a process declaration and S a concrete specification.

1. If DJ{r}KS /⊑S and α(DJ{r}KS )/≤α(S), then r is abstractly incorrect w.r.t. α(S).
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2. If there exists an abstract uncovered element a w.r.t. α(S), such that γ(a) ⊑ S and
γ(�) = {ε}, then there exists a concrete uncovered element c w.r.t. S (i.e., c ⊑ S and
c ⊓DJDKS = {ε}).

Proof.

Point 1 Since S ⊑ γ ○α(S), by monotonicity of α and the correctness of DαJ{r}K, it holds
that α(DJ{r}KS ) ≤ α(DJ{r}Kγ ○α(S)) ≤ D

αJ{r}Kα(S). By hypothesis α(DJ{r}KS ) /≤
α(S), therefore DαJ{r}Kα(S) /≤ α(S) since α(DJ{r}KS ) ≤ DαJ{r}Kα(S). The thesis
holds by Definition 4.1.2.

Point 2 By hypothesis, a ≤ α(S) and a ∧DαJDKα(S) = �. Hence γ(a) ⊓ γ(DαJDKα(S)) =

{ε} since γ(�) = {ε} and γ preserves greatest lower bounds. By construction
DαJDK = α ○DJDK ○ γ, thus γ(a) ⊓ γ(α(DJDKγ(α(S)))) = {ε}. Since id ⊑ γ ○α and
by monotonicity of DJDK, γ(a) ⊓ DJDKS = {ε}. By hypothesis, γ(a) ⊑ S hence γ(a)
is a concrete uncovered element.

4.A.2 Proofs of Section 4.2

Lemma 4.2.8. (α±, γ±) is a Galois Insertion

(M, ⊑, ⊔, ⊓, M, {ε}) −−−−−→Ð→←−−−−−−
α±

γ±

(M±, ⊑, ⊔, ⊓, M±, {ε})

Proof.
α± is monotonic Let be R,R′ ∈ M such that R ⊑ R′. We have that

α±(R) = ⊔{α±(r) ∣ r ∈ R} ⊑ ⊔{α±(r) ∣ r ∈ R′} = α±(R′).

γ± is monotonic Consider R̃, R̃′ ∈ M± such that R̃ ⊑ R̃′. It follows that

γ±(R̃) = ⊔{γ±(r̃) ∣ r̃ ∈ R̃} ⊑ ⊔{γ±(r̃) ∣ r̃ ∈ R̃′} = γ±(R̃′).

(γ± ○α±) is extensive This means that ∀R ∈ M. R ⊑ γ±(α±(R)). Thus, we show that
for all r ∈ R it exists r̄ ∈ γ±(α±(R)) such that r is a prefix of r̄. We proceed by
structural induction on r.

r = ε From Definition 4.2.7, it follows directly that ε ∈ α±(R) and ε ∈ γ±(α±(R)).

r = ⊠ By Definition 4.2.7, we have that ⊠ ∈ α±(R) and, thus, ⊠ ∈ γ±(α±(R)).

r = (η+, η−) ↣ c ⋅ r′ By (4.2.5) it follows that α±(r) = (τ+(η+), τ−(η−)) ↣ τ+(c) ⋅
α±(r′). For the properties expressed by (4.2.2) the condition (τ+(η+), τ−(η−))
is valid, thus also (τ+(η+), τ−(η−)) ↣ τ+(c) is valid. Furthermore, by (4.2.1e)
and (4.2.1i), there follow the properties of monotonicity and consistency for
α±(r), thus it belongs to the domain M±. By (4.2.9), it follows that r ∈

γ±(α±(R)).

r = stutt(η−) ⋅ r′ By (4.2.5) it follows that α±(r) = stutt(τ−(η−)) ⋅ α±(r′). As in
the previous case from (4.2.1e) and (4.2.1i) we can say that this sequence is a
valid one and we can conclude that r ∈ γ±(α±(R)).
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(α± ○γ±) is the identity for M±

We show that ∀R̃ ∈ M±. R̃ = (α± ○γ±)(R̃).

⊆ We first prove that for all r̃ ∈ R̃, r̃ ∈ α±(γ±(R̃)) by structural induction on r̃.

r̃ = ε By (4.2.9), ε ∈ γ±(R̃) and by (4.2.5), ε ∈ α±(γ±(R̃)).
r̃ = ⊠ By (4.2.9), ⊠ ∈ γ±(R̃) and by (4.2.5), ⊠ ∈ α±(γ±(R̃)).
r̃ = η̃ ↣ ĉ ⋅ r̃′ From (4.2.9) it follows that (η+, η−) ↣ c ⋅ r′ ∈ γ±(R̃) where

τ+(η+) = η̂, τ−(η−) = η̌, τ+(c) = ĉ and r′ ∈ γ±(r̃′). Thus, by (4.2.5) and by
inductive hypothesis, it follows that r̃ ∈ α±(γ±(R̃)).

r̃ = stutt(η̌) ⋅ r̃′ From (4.2.9) it follows that stutt(η−)⋅r′ ∈ γ±(R̃) where τ−(η−) =
ǎ and r′ ∈ γ±(r̃′). Therefore, by (4.2.5) and by inductive hypothesis, we
have that r̃ ∈ α±(γ±(R̃)).

⊇ Now we show the other inclusion, for all r̃ ∈ α±(γ±(R̃)), r̃ ∈ R̃. We proceed by
structural induction on r̃.
r̃ = ε By (4.2.5), ε ∈ γ±(R̃) and from (4.2.9) it follows directly that ε ∈ R̃.
r̃ = ⊠ By (4.2.5), ⊠ ∈ γ±(R̃) and from (4.2.9) it follows directly that ⊠ ∈ R̃.
r̃ = η̃ ↣ ĉ ⋅ r̃′ By (4.2.5), it can be noticed that it exists a concrete sequence

r ∈ γ±(R̃) such that r = (η+, η−) ↣ c ⋅ r′ and τ+(η+) = η̂, τ−(η−) = η̌,
τ+(c) = ĉ and α±(r′) = r̃′. But this means that η̃ ↣ â ⋅ r̃′ ∈ R̃, otherwise we
would not obtain r by applying γ± to R̃.

r̃ = stutt(η̌) ⋅ r̃′ By (4.2.5), it can be noticed that it exists a concrete sequence
r ∈ γ±(R̃) such that r = stutt(η−)⋅r′, τ−(η−) = η̌ and α±(r′) = r̃′. This means
that stutt(η̌) ⋅ r̃′ ∈ R̃ otherwise r would not be obtained by applying γ± to
R̃.

Lemma 4.2.11. (κ,κ−1 ) is an order-preserving isomorphism

(M±, ⊑, ⊔, ⊓, M±, {ε}) −−−−−−→Ð→←←Ð−−−−−−
κ

κ−1

(A, ≤, ⋁, ⋀, ⊺, �).

Proof.
(κ−1 ○κ) is the identity for M±. Let R̄ ∈ M±, then

κ−1 (κ(R̄)) = κ−1 (⋁{κ(r̄) ∣ r̄ ∈ R̄})

= ⊔{κ−1 (r̃) ∣ r̃ ∈ ⋁{κ(r̄) ∣ r̄ ∈ R̄}}

= ⊔{κ−1 (κ(r̄)) ∣ r̄ ∈ R̄}

= ⊔{r̄ ∣ r̄ ∈ R̄}

= R̄

(κ ○κ−1 ) is the identity for A. Consider R̃ ∈ A:

(κ ○κ−1 )(R̃) = κ(⊔{κ−1 (r̃) ∣ r̃ ∈ R̃})

= ⋁{κ(r̄) ∣ r̄ ∈ ⊔{κ−1 (r̃) ∣ r̃ ∈ R̃}}

= ⋁{κ(κ−1 (r̃)) ∣ r̃ ∈ R̃}

= ⋁{r̃ ∣ r̃ ∈ R̃}

= R̃
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4.A.3 Proofs of Section 4.3

Lemma 4.3.2. Given a concrete sequence r and a concrete constraint c ∈ C, the abstract
operator of propagation ↓̃ is such that α̃(r↓c) = α̃(r)↓̃τ+(c)

Proof.
We proceed by induction on the structure of r.

r = ε ∀c ∈ C. α̃(ε↓c) = ε = α̃(ε)↓̃τ+(c).

r = ⊠ ∀c ∈ C. α̃(⊠↓c) = ⊠ = α̃(⊠)↓̃τ+(c).

r = (η+, η−) ↣ c ⋅ r′ In case c É (η+, η−), r↓c and α̃(r↓c) are not defined. From Equa-
tion (4.2.3), it follows that τ+(c) É̃ (τ+(η+), τ−(η−)), thus, neither α̃(r)↓̃τ+(c) is
defined. Otherwise, if c≫ (η+, η−) we can distinguish two cases.

c⊗ a ≠ false By Equation (4.2.23), α̃(r) = [(τ+(η+), τ−(η−)) ↣ τ+(a)]n ⋅ α̃(r′′)
and α̃(r′) = [(τ+(η+), τ−(η−)) ↣ τ+(a)]n−1 ⋅ α̃(r′′) with n ≥ 1. Moreover, from
Equation (4.2.3), c ≫ (η+, η−) ⇒ τ+(c) ≫̃ (τ+(η+), τ−(η−)) and, from Equa-
tion (4.2.1c), c⊗ a ≠ false ⇒ τ+(a) ⊗̂ τ+(c) ≠ ˆfalse.

α̃(r↓c) = α̃(((η
+, η−) ↣ a ⋅ r′)↓c)

[ since c≫ (η+, η−) and c⊗ a ≠ false ]

= α̃((c⊗ η+, η−) ↣ c⊗ a ⋅ (r′↓c))

[ by (4.2.23) ]

=κ([(τ+(c⊗ η+), τ−(η−)) ↣ τ+(c⊗ a)]1 ⋅ α̃(r′↓c))

[ by Inductive Hypothesis ]

=κ([(τ+(c⊗ η+), τ−(η−)) ↣ τ+(c⊗ a)]1 ⋅ α̃(r′)↓̃τ+(c))

[ by (4.2.1c) ]

=κ([(τ+(c) ⊗̂ τ+(η+), τ−(η−)) ↣ τ+(c) ⊗̂ τ+(a)]1 ⋅ α̃(r′)↓̃τ+(c))

[ since τ+(c) ≫̃ (τ+(η+), τ−(η−)) and τ+(a) ⊗̂ τ+(c) ≠ ˆfalse ]

=κ([(τ+(c) ⊗̂ τ+(η+), τ−(η−)) ↣ τ+(c) ⊗̂ τ+(a)]1⋅

[(τ+(c) ⊗̂ τ+(η+), τ−(η−)) ↣ τ+(c) ⊗̂ τ+(a)]n−1 ⋅ α̃(r′′)↓̃τ+(c))

[ by (4.2.14) ]

=[(τ+(c) ⊗̂ τ+(η+), τ−(η−)) ↣ τ+(c) ⊗̂ τ+(a)]n ⋅ α̃(r′′)↓̃τ+(c)

[ by Definition 4.3.1 ]

= α̃(r)↓̃τ+(c)

c⊗ a = false Similarly to the previous case, by Equation (4.2.3), c ≫ (η+, η−) ⇒
τ+(c) ≫̃ (τ+(η+), τ−(η−)) and by Equation (4.2.1c), c ⊗ a = false ⇒ τ+(a) ⊗̂
τ+(c) = ˆfalse.

α̃(r↓c) = α̃(((η
+, η−) ↣ a ⋅ r′)↓c)

[ since c≫ (η+, η−) and c⊗ a = false ]
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= α̃((c⊗ η+, η−) ↣ false ⋅ ⊠)

=[(τ+(c⊗ η+), τ−(η−)) ↣ τ+(c⊗ a)]1

[ by Equation (4.2.1c) ]

=[(τ+(c) ⊗̂ τ+(η+), τ−(η−)) ↣ τ+(c) ⊗̂ τ+(a)]1

[ by Definition 4.3.1 ]

= α̃(r)↓̃τ+(c)

r = stutt(η−) ⋅ r′ In case it exists c− ∈ η− such that c ⊢ c−, r↓c and, consequently, α̃(r↓c)
are not defined. From Equation (4.2.1i) it follows that τ+(c) ⊢̃ τ−(η−), thus neither
α̃(r)↓̃τ+(c) is defined.

Otherwise, if ∀h− ∈ η−. c ⊬ h− we have that α̃(stutt(η−)⋅r′) = [stutt(τ−(η−))]n ⋅α̃(r′′)
and α̃(stutt(r′)) = [stutt(τ−(η−))]n−1 ⋅ α̃(r′′) with n ≥ 1

α̃(r↓c) = α̃(stutt(η−) ⋅ r′↓c)

[ by (4.2.23) ]

= κ([stutt(τ−(η−))]1 ⋅ α̃(r′↓c))

[ by Inducctive Hypothesis ]

= κ([stutt(τ−(η−))]1 ⋅ α̃(r′)↓̃τ+(c))

= κ([stutt(τ−(η−))]1 ⋅ [stutt(τ−(η−))]n−1 ⋅ α̃(r′′)↓τ+(c))

[ by (4.2.14) ]

= [stutt(τ−(η−))]n ⋅ α̃(r′′)↓τ+(c)

[ by Definition 4.3.1 ]

= α̃(r)↓̃τ+(c)

Lemma 4.3.6. Let r1, r2 ∈ M, then α̃(r1 ∥̄ r2) = α̃(r1) ∥̃ α̃(r2) holds.

Proof.

We proceed by induction on the structure of r1
4.

r1 = ε and any r2 α̃(r1 ∥̄ r2) = α̃(r2) = ε ∥̃ α̃(r2) = α̃(r1) ∥̃ α̃(r2).

r1 = ⊠ and any r2 α̃(r1 ∥̄ r2) = α̃(r2) = ⊠ ∥̃ α̃(r2) = α̃(r1) ∥̃ α̃(r2).

r1 = η1 ↣ c1 ⋅ r
′

1 and r2 = η2 ↣ c2 ⋅ r
′

2 In case η1 ⊗ η2 is not a valid condition r1 ∥̄ s2 is
not defined and, as a consequence, α̃(r1 ∥̄ s2) is not defined. Moreover, by 4.2.2 it
follows that (τ+(η+1 ) ⊗̂ τ

+(η+2 ), τ
−(η−1 ) ⊕̌ τ

−(η−2 )) is abstractly invalid, thus, neither
α̃(r1) ∥̃ α̃(r2) is defined in this case.

Otherwise, if η1 ⊗ η2 is a valid condition, by Equation (4.2.2) its abstraction is valid
too, thus, we can distinguish two cases.

4The cases for r2 are symmetric.
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c1 ⊗ c2 ≠ false From 4.2.1c, it follows that τ+(c1) ⊗̂ τ
+(c2) ≠ ˆfalse.

α̃(r1 ∥̄ s2) =

= κ(α±((η1 ⊗ η2) ↣ c1 ⊗ c2 ⋅ (r
′
1↓c2 ∥̄ r

′
2↓c1)))

[ by (4.2.5) and (4.2.2) ]

= κ([(τ+(η+1 ⊗ η
+
2 ), τ

−(η−1 ∪ η
−
2 )) ↣ τ+(c1 ⊗ c2)]

1 ⋅ α̃(r′1↓c2 ∥̄ r
′
2↓c1))

[ by properties 4.2.1c (τ+(c1) ⊗̂ τ
+(c2) ≠ ˆfalse) and 4.2.1d ]

= κ( [(τ+(η+1 ) ⊗̂ τ
+(η+2 ), τ

−(η−1 ) ⊕̌ τ
−(η−2 )) ↣ τ+(c1)⊗̂ τ

+(c2)]
1

⋅ α̃(r′1↓c2 ∥̄ r
′
2↓c1))

[ by Inductive Hypothesis ]

= κ( [(τ+(η+1 ) ⊗̂ τ
+(η+2 ), τ

−(η−1 ) ⊕̌ τ
−(η−2 )) ↣ τ+(c1)⊗̂ τ

+(c2)]
1

⋅ α̃(r′1↓c2) ∥̃ α̃(r
′
2↓c1))

[ by Lemma 4.3.2 ]

= κ( [(τ+(η+1 ) ⊗̂ τ
+(η+2 ), τ

−(η−1 ) ⊕̌ τ
−(η−2 )) ↣ τ

+(c1) ⊗̂ τ
+(c2)]

1

⋅ α̃(r′1)↓̃τ+(c2) ∥̃ α̃(r
′
2)↓̃τ+(c1))

[ by Definition 4.3.5 ]

= κ([(τ+(η+1 ), τ
−(η−1 )) ↣ τ+(c1)]

1 ⋅ α̃(r′1)↓̃τ+(c2))

∥̃

κ([(τ+(η+2 ), τ
−(η−2 )) ↣ τ+(c2)]

1 ⋅ α̃(r′2)↓̃τ+(c2))

[ by (4.2.5) ]

= κ(α±(rA)) ∥̃ κ(α
±(rB))

[ by (4.2.23) ]

= α̃(r1) ∥̃ α̃(r2)

c1 ⊗ c2 = false

α̃(r1 ∥̄ s2) =

= κ(α±((η ⊗ δ) ↣ false ⋅ ⊠))

[ by (4.2.5), (4.2.2) and since τ+(c1) ⊗̂ τ
+(c2) ≠ ˆfalse ]

= [(τ+(η+ ⊗ δ+), τ−(η− ∪ δ−)) ↣ ˆfalse]1 ⋅ ⊠

[ by properties 4.2.1c and 4.2.1d ]

= [(τ+(η+) ⊗̂ τ+(δ+), τ−(η−) ⊕̌ τ−(δ−)) ↣ ˆfalse]1

[ by Definition 4.3.5 and since τ+(a) ⊗̂ τ+(b) = ˆfalse ]

= κ([(τ+(η+), τ−(η−)) ↣ τ+(a)]1 ⋅ α±(r′A))

∥̃

κ([(τ+(δ+), τ−(δ−)) ↣ τ+(b)]1 ⋅ α±(r′B))

[ by (4.2.5) ]
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= κ(α±(r1)) ∥̃ κ(α
±(r2))

[ by (4.2.23) ]

= α̃(r1) ∥̃ α̃(r2)

r1 = η1 ↣ c1 ⋅ r
′

1 and r2 = stutt(η−2) ⋅ r
′

2 In case (η+1 , η
−
1 ∪ η−2 ) is not a valid condition

r1 ∥̄ s2 is not defined and, as a consequence, α̃(r1 ∥̄ s2) is not defined. Moreover,
by 4.2.2 it follows that (τ+(η+1 ), τ

−(η−1 ) ⊕̌ τ
−(η−2 )) is abstractly invalid, thus, neither

α̃(r1) ∥̃ α̃(r2) is defined in this case. Otherwise, if (η+1 , η
−
1 ∪ η

−
2 ) is a valid condition,

by Equation (4.2.2) its abstraction is valid too, thus, we can distinguish two cases.

α̃(r1 ∥̄ s2) =

= κ(α±((η+1 , η
−
1 ∪ η

−
2 ) ↣ c1 ⋅ r

′
1 ∥̄ r

′
2↓c1))

[ by (4.2.5) and (4.2.2) ]

= κ([(τ+(η+1 ), τ
−(η−1 ∪ η

−
2 )) ↣ τ+(c1)]

1 ⋅ α̃(r′1 ∥̄ r
′
2↓c1))

[ by (4.2.1d) ]

= κ([(τ+(η+1 ), τ
−(η−1 ) ⊕̌ τ

−(η−2 )) ↣ τ+(c1)]
1 ⋅ α̃(r′1 ∥̄ r

′
2↓c1))

[ by Inductive Hypothesis ]

= κ([(τ+(η+1 ), τ
−(η−1 ) ⊕̌ τ

−(η−2 )) ↣ τ+(c1)]
1 ⋅ (α̃(r′1) ∥̃ α̃(r

′
2↓c1)))

[ by Lemma 4.3.2 ]

= κ([(τ+(η+1 ), τ
−(η−1 ) ⊕̌ τ

−(η−2 )) ↣ τ+(c1)]
1 ⋅ (α̃(r′1) ∥̃ α̃(r

′
2)↓̃τ+(c1)))

[ by Definition 4.3.5 ]

= κ([(τ+(η+1 ), τ
−(η−1 )) ↣ τ+(c1)]

1 ⋅ α̃(r′1)) ∥̃ κ([stutt(τ−(η−2 ))]
1 ⋅ α̃(r′2)↓̃τ+(c1))

[ by (4.2.5) ]

= κ(α±(r1)) ∥̃ κ(α
±(r2))

[ by (4.2.23) ]

= α̃(r1) ∥̃ α̃(r2)

r1 = stutt(η−1) ⋅ r
′

1 and r2 = stutt(η−2) ⋅ r
′

2

α̃(r1 ∥̄ s2) =

= κ(α±(stutt(η−1 ∪ η
−
2 ) ⋅ r

′
1 ∥̄ r

′
2))

[ by (4.2.5) ]

= κ([stutt(τ−(η−1 ∪ η
−
2 ))]

1 ⋅ α̃(r′1 ∥̄ r
′
2))

[ by (4.2.1d) ]

= κ([stutt(τ−(η−1 ) ⊕̌ τ
−(η−2 ))]

1 ⋅ α̃(r′1 ∥̄ r
′
2))

[ by Inductive Hypothesis ]

= κ([stutt(τ−(η−1 ) ⊕̌ τ
−(η−2 ))]

1 ⋅ α̃(r′A) ∥̃ α̃(r
′
B))

[ by Definition 4.3.5 ]

= κ([stutt(τ−(η−1 ))]
1 ⋅ α̃(r′1)) ∥̃ κ([stutt(τ−(η−1 ))]

1 ⋅ α̃(r′2))

[ by (4.2.5) ]
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= κ(α±(r1)) ∥̃ κ(α
±(r2))

[ by (4.2.23) ]

= α̃(r1) ∥̃ α̃(r2)

Lemma 4.3.8. Given r ∈ M and x ∈ Var, α̃(∃̄x r) = κ(∃̃x α̃(r)).

Proof.

We proceed by structural induction on r.

r = ε or r = ⊠ In this case the statement follows directly from Definition 4.3.7.

r = (η+, η−) ↣ c ⋅ r′

α̃(∃̄x r) = α̃(∃̄x((η
+, η−) ↣ a ⋅ r′))

[ by (4.2.23) ]

=κ(α±((∃x η
+,∃x η

−) ↣ ∃x a ⋅ ∃̄x r
′))

[ by (4.2.5) ]

=κ([(τ+(∃x η
+), τ−(∃x η

−)) ↣ τ+(∃x a)]
1 ⋅ α±(∃̄x r

′))

[ by (4.2.1g) and (4.2.1h) ]

=κ([(∃̂x τ
+(η+), ∃̌x τ

−(η−)) ↣ ∃̂x τ
+(a)]1 ⋅ α±(∃̄x r

′))

[ by Inductive Hypothesis ]

=κ([(∃̂x τ
+(η+), ∃̌x τ

−(η−)) ↣ ∃̂x τ
+(a)]1 ⋅ ∃̃x α

±(r′))

[ by (4.2.5) ]

=κ(∃̃x α
±(r))

[ since κ is idempotent ]

=κ(∃̃x κ(α
±(r)))

[ by (4.2.23) ]

=κ(∃̃x α̃(r))

r = stutt(η−) ⋅ r′

α̃(∃̄x r) = α̃(∃̄x(stutt(η−) ⋅ r′))

[ by (4.2.23) ]

=κ(α±(stutt(∃x η
−) ⋅ ∃̄x r

′))

=κ([stutt(τ−(∃x η
−))]1 ⋅ α±(∃̄x r

′))

[ by (4.2.1h) ]

=κ([stutt(∃̌x τ
−(η−))]1 ⋅ α±(∃̄x r

′))

[ by Inductive Hypothesis ]

=κ([stutt(∃̌x τ
−(η−))]1 ⋅ ∃̃x α

±(r′))

[ by (4.2.5) ]
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=κ(∃̃x α
±(r))

[ since κ is idempotent ]

=κ(∃̃x κ(α
±(r)))

[ by (4.2.23) ]

=κ(∃̃x α̃(r))

Theorem 4.A.1 Given an interpretation I±,

(α̃ ○DJDK ○ γ̃)(I±) = λp(x).⋁p(x)∶−A∈DA
±JAKI±

Proof.

(α̃ ○DJDK ○ γ̃)(I±) = λp(x). α̃(⊔p(x)∶−A∈DAJAKγ̃(I±))

= λp(x).⋁p(x)∶−A∈D α̃(AJAKγ̃(I±))}

Now, we show that given an agent A, α̃(AJAKγ̃(I±)) = A±JAKIα . We proceed by
induction on the structure of the agent A.

A = skip In this case the proof is straightforward: α̃(AJskipKγ̃(I±)) = ⊠ = A±JskipKI±

A = tell(c)

α̃(AJtell(c)Kγ(Iα)) = α̃({(true,∅) ↣ c ⋅ ⊠})

[ by (4.2.23) ]

= [(τ+(true), τ−(∅)) ↣ τ+(c)]1 ⋅ ⊠

[ since τ+(true) = ˆtrue and τ−(∅) = ˇfalse ]

= [( ˆtrue, ˇfalse) ↣ τ+(c)]1 ⋅ ⊠

[ by (4.3.4) ]

= A±Jtell(c)KIα

A = ∑n
i=1 ask(ci) →Ai For the sake of brevity, we call F (respectively F̃ ) the body of the

least fixed point in (3.1.7) (respectively (4.3.9)).

F ∶=λR. (stutt({c1, . . . , cn}) ⋅R ⊔

⊔{(ci,∅) ↣ ci ⋅ (r↓ci) ∣1 ≤ i ≤ n, r ∈ AJAiKI , r being ci-compatible})

F̃ ∶=λR̃. (κ(stutt(τ−({c1, . . . , cn})) ⋅ R̃) ∨

⋁{κ([(τ+(ci), ˇfalse) ↣ τ+(ci)]
1 ⋅ (r̃↓̃τ+(ci))) ∣ 1 ≤ i ≤ n, r̃ ∈ A±JAiKI± ,

r̃ being τ+(ci)-compatible})

To show that A±J∑ni=1 ask(ci) → AiKI± = α̃(AJ∑ni=1 ask(ci) → AiKγ̃(I±)) it is necessary

to prove first that α̃ ○F ○ γ̃ ○ α̃ = α̃ ○F and F̃ = α̃ ○F ○ γ̃.
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α̃ ○F ○ γ̃ ○ α̃

= α̃(λR. (stutt({c1, . . . , cn}) ⋅ γ̃(α̃(R)) ⊔

⊔{(ci,∅) ↣ ci ⋅ (r↓ci) ∣1 ≤ i ≤ n, r ∈ AJAiKI , r ci-compatible}))

[ by the additivity of α̃ ]

= λR. (α̃(stutt({c1, . . . , cn}) ⋅ γ̃(α̃(R))) ∨

⋁ α̃({(ci,∅) ↣ ci ⋅ (r↓ci) ∣1 ≤ i ≤ n, r ∈ AJAiKI , r ci-compatible}))

[ by Definition of α̃ (4.2.23) and since κ is idempotent ]

= λR. (κ(α±(stutt({c1, . . . , cn})) ⋅ α̃(γ̃(α̃(R)))) ∨

⋁ α̃({(ci,∅) ↣ ci ⋅ (r↓ci) ∣1 ≤ i ≤ n, r ∈ AJAiKI , r ci-compatible}))

[ α̃ ○ γ̃ is the identity for M̃
±

]

= λR. (κ(α±(stutt({c1, . . . , cn})) ⋅ α̃(R)) ∨

⋁ α̃({(ci,∅) ↣ ci ⋅ (r↓ci) ∣1 ≤ i ≤ n, r ∈ AJAiKI , r ci-compatible}))

= α̃(λR. (stutt({c1, . . . , cn}) ⋅R ⊔

⊔{(ci,∅) ↣ ci ⋅ (r↓ci) ∣1 ≤ i ≤ n, r ∈ AJAiKI , r ci-compatible}))

[ by Definition of α̃ (4.2.23) ]

= α̃ ○F

α̃ ○F ○ γ̃

= α̃(λR̃. (stutt({c1, . . . , cn}) ⋅ γ̃(R̃) ⊔

⊔{(ci,∅) ↣ ci ⋅ (r↓ci) ∣1 ≤ i ≤ n, r ∈ AJAiKγ̃(I±), r ci-compatible}))

[ by the additivity of α̃ ]

= λR̃. (α̃(stutt({c1, . . . , cn}) ⋅ γ̃(R̃)) ∨

⋁ α̃({(ci,∅) ↣ ci ⋅ (r↓ci) ∣1 ≤ i ≤ n, r ∈ AJAiKγ̃(I±), r ci-comp.}))

[ by Definition of α̃ (4.2.23) and since κ is idempotent ]

= λR̃. (κ([stutt(τ−({c1, . . . , cn}))]
1 ⋅ α̃(γ̃(R̃))) ∨

⋁{κ([(τ+(ci), τ
−(∅)) ↣ τ+(ci)]

1 ⋅ α̃(r↓ci)) ∣1 ≤ i ≤ n, r ∈ AJAiKγ̃(I±), r ci-comp.})

[ α̃ ○ γ̃ is the identity for M̃
±

]

= λR̃. (κ([stutt(τ−({c1, . . . , cn}))]
1 ⋅ R̃) ∨

⋁{κ([(τ+(ci), τ
−(∅)) ↣ τ+(ci)]

1 ⋅ α̃(r↓ci)) ∣1 ≤ i ≤ n, r ∈ AJAiKγ̃(I±), r ci-comp.})

[ by Lemma 4.3.2 and since τ−(∅) = ˇfalse ]

= λR̃. (κ([stutt(τ−({c1, . . . , cn}))]
1 ⋅ R̃) ∨

⋁{κ([(τ+(ci), ˇfalse) ↣ τ+(ci)]
1 ⋅ α̃(r)↓̃τ+(ci)) ∣1 ≤ i ≤ n, r ∈ AJAiKγ̃(I±), r ci-comp.})

[ by Proposition 4.3.4 ]
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= λR̃. (κ([stutt(τ−({c1, . . . , cn}))]
1 ⋅ R̃) ∨

⋁{κ([(τ+(ci), ˇfalse) ↣ τ+(ci)]
1 ⋅ r̃↓̃τ+(ci)) ∣1 ≤ i ≤ n, r̃ ∈ α̃(AJAiKγ̃(I±)), r̃ τ

+(ci)-comp.})

[ by Inductive Hypothesis ]

= λR̃. (κ([stutt(τ−({c1, . . . , cn}))]
1 ⋅ R̃) ∨

⋁{κ([(τ+(ci), ˇfalse) ↣ τ+(ci)]
1 ⋅ r̃↓̃τ+(ci)) ∣1 ≤ i ≤ n, r̃ ∈ A

±JAiKI± , r̃ τ+(ci)-comp.})

= F̃

Now, we can show that for each n ∈ N F̃ ↑n = α̃(F ↑n).

F̃ ↑n = (α̃ ○F ○ γ̃)n({ε})

= (α̃ ○F ○ γ̃ ○ α̃ ○F ○ γ̃ . . . α̃ ○F ○ γ̃)({ε})

[ α̃ ○F ○ γ̃ ○ α̃ = α̃ ○F ]

= (α̃ ○Fn ○ γ̃())({ε})

[ since γ̃({ε}) = {ε} ]

= (α̃ ○Fn)({ε})

= α̃(F ↑n)

By considering the limit of the iterations, we can conclude thatA±J∑ni=1 ask(ci) → AiKI± =
α̃(AJ∑ni=1 ask(ci) → AiKγ̃(I±)).

A±J
n

∑
i=1

ask(ci) → AiKI± = lfp
M̃

± F̃

= ⋁n≥0F̃ ↑n

[∀n F̃ ↑n = α̃(F )↑n ]

= ⋁n≥0 α̃(F )↑n

[ α̃ additive ]

= α̃(⊔n≥0F ↑n)

= α̃(lfpM F )

= α̃(AJ∑ni=1 ask(ci) → AiKγ̃(I±))

A = now c thenA elseB

α̃(AJnow c then A else BKγ̃(I±))
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= α̃( {(c,∅) ↣ c ⋅ ⊠ ∣ ⊠ ∈ AJAKγ̃(I±)} ⊔

⊔{(η+ ⊗ c, η−) ↣ d⊗ c ⋅ (r↓c) ∣ (η+, η−) ↣ d ⋅ r ∈ AJAKγ̃(I±), d⊗ c ≠ false,

∀c− ∈ η−. η+ ⊗ c ⊬ c−} ⊔

⊔{(η+ ⊗ c, η−) ↣ ˆfalse ∣ (η+, η−) ↣ d ⋅ r ∈ AJAKγ(Iα), d⊗ c = false

∀c− ∈ η−. η+ ⊗ c ⊬ c−} ⊔

⊔{(c, η−) ↣ c ⋅ (r↓c) ∣ stutt(η−) ⋅ r ∈ AJAKγ(Iα)∀c
− ∈ η−. η+ ⊗ c ⊬ c−} ⊔

{(true,{c}) ↣ true ⋅ ⊠ ∣ ⊠ ∈ AJBKγ̃(I±)} ⊔

⊔{(η+, η− ∪ {c}) ↣ d ⋅ r ∣ (η+, η−) ↣ d ⋅ r ∈ AJBKγ̃(I±), η
+ ⊬ c} ⊔

⊔{(true, η− ∪ {c}) ↣ true ⋅ r ∣ stutt(η−) ⋅ r ∈ AJBKγ̃(I±)})

[ by Definition of α̃ (4.2.23) ]

= {[(τ+(c),

ˇfalse
³¹¹¹¹·¹¹¹¹¹µ
τ−(∅)) ↣ τ+(c)]1 ⋅ ⊠ ∣ ⊠ ∈ AJAKγ̃(I±)} ∨

⋁{κ([(

c×̂τ+(η+)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
τ+(η+ ⊗ c), τ−(η−)) ↣

c×̂τ+(d)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
τ+(a⊗ c)]1 ⋅

α̃(r)↓̃τ+(c)
³¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
α̃(r↓c) ) ∣

(η+, η−) ↣ d ⋅ r ∈ AJAKγ̃(I±), c⊗ a ≠ false and ∀h− ∈ η−. c⊗ η+ ⊬ h−} ∨

⋁{[(

c×̂τ+(η+)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
τ+(η+ ⊗ c), τ−(η−)) ↣

ˆfalse
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
τ+(false)]1 ∣ (η+, η−) ↣ d ⋅ r ∈ AJAKγ̃(I±), c⊗ a = false

and ∀h− ∈ η−. c⊗ η+ ⊬ h−} ∨

⋁{κ([(τ+(c), τ−(η−)) ↣ τ+(c)]1 ⋅

α̃(r)↓̃τ+(c)
³¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
α̃(r↓c) ) ∣ stutt(η−) ⋅ r ∈ AJAKγ̃(I±)

∀h− ∈ η−. η+ ⊬ h−} ∨

{[(

ˆtrue
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
τ+(true), τ−({c})) ↣

ˆtrue
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
τ+(true)]1 ⋅ ⊠ ∣ ⊠ ∈ AJBKγ̃(I±)} ∨

⋁{κ([(τ+(η+),

c×̌τ−(η−)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
η− ∪ τ−({c})) ↣ τ+(d)]1 ⋅ α̃(r)) ∣ (η+, η−) ↣ d ⋅ r ∈ AJBKγ̃(I±), c ⊬ η

+} ∨

⋁{κ([(

ˆtrue
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
τ+(true),

c×̌τ−(η−)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
η− ∪ τ−({c})) ↣

ˆtrue
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
τ+(true)]1 ⋅ α̃(r)) ∣ stutt(η−) ⋅ r ∈ AJBKγ̃(I±)}

[ by Properties 4.2.1 and by Lemma 4.3.2 ]
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= {[(τ+(c), ˇfalse) ↣ τ+(c)]1 ⋅ ⊠ ∣ ⊠ ∈ α̃(AJAKγ̃(I±))} ∨

⋁{κ([(c ×̂ τ+(η+), τ−(η−)) ↣ c ×̂ τ+(d)]1 ⋅ α±(r)↓̃τ+(c)) ∣ c ×̂ τ+(d) ≠ ˆfalse,

c ×̂ τ+(η+) ⊬̃ τ−(η−), κ([(τ+(η+), τ−(η−)) ↣ τ+(d)]1 ⋅ α±(r)) ∈ α̃(AJAKγ̃(I±))} ∨

⋁{[(c ×̂ τ+(η+), τ−(η−)) ↣ ˆfalse]1 ∣

κ([(τ+(η+), τ−(η−)) ↣ τ+(d)]1 ⋅ α±(r)) ∈ α̃(AJAKγ̃(I±)),

c ×̂ τ+(d) = ˆfalse, c ×̂ τ+(η+) ⊬̃ τ−(η−)} ∨

⋁{κ([(τ+(c), τ−(η−)) ↣ τ+(c)]1 ⋅ α±(r)↓̃τ+(c)) ∣

κ([stutt(τ−(η−))]1 ⋅ α±(r)) ∈ α̃(AJAKγ̃(I±))

τ+(c) ⊬̃ τ−(η−)} ∨

{[( ˆtrue, τ−({c})) ↣ ˆtrue]1 ⋅ ⊠ ∣ ⊠ ∈ α̃(AJBKγ̃(I±))} ∨

⋁{κ([( τ+(η+), c ×̌ τ−(η−)) ↣ τ+(d)]1 ⋅ α±(r)) ∣

κ([(τ+(η+), τ−(η−)) ↣ τ+(d)]1 ⋅ α±(r)) ∈ α̃(AJBKγ̃(I±)), τ
+(η+) ⊬̃ τ−({c})} ∨

⋁{κ([( ˆtrue, c ×̌ τ−(η−)) ↣ ˆtrue]1 ⋅ α±(r)) ∣ κ([stutt(τ−(η−))]1 ⋅ α±(r)) ∈ α̃(AJBKγ̃(I±))}

[ by Definition of κ (4.2.14) ]

= {[(τ+(c), ˇfalse) ↣ τ+(c)]1 ⋅ ⊠ ∣ ⊠ ∈ α̃(AJAKγ̃(I±))} ∨

⋁{κ([(c ×̂ η̂, η̌) ↣ c ×̂ d̂]n ⋅ (r̃↓̃τ+(c))) ∣ c ×̂ d̂ ≠ ˆfalse,

c ×̂ η̂ ⊬̃ η̌, [(η̂, η̌) ↣ d̂]n+1 ⋅ r̃ ∈ α̃(AJAKγ̃(I±))} ∨

⋁{[(c ×̂ η̂, η̌) ↣ ˆfalse]1 ∣ [(η̂, η̌) ↣ d̂]n ⋅ r̃ ∈ α̃(AJAKγ̃(I±)),

c ×̂ d̂ = ˆfalse, c ×̂ η̂ ⊬̃ η̌} ∨

⋁{κ([(τ+(c), η̌) ↣ τ+(c)]1 ⋅ [stutt(η̌)]n ⋅ r̃↓̃τ+(c)) ∣ [stutt(η̌)]n+1 ⋅ r̃ ∈ α̃(AJAKγ̃(I±))

τ+(c) ⊬̃ η̌} ∨

{[( ˆtrue, τ−({c})) ↣ ˆtrue]1 ⋅ ⊠ ∣ ⊠ ∈ α̃(AJBKγ(Iα))} ∨

⋁{κ([(η̂, c ×̌ η̌) ↣ d̂]n ⋅ r̃) ∣

[(η̂, η̌) ↣ d̂]n ⋅ r̃ ∈ α̃(AJBKγ̃(I±)), η̂ ⊬̃ τ
−({c})} ∨

⋁{κ([( ˆtrue, c ×̌ η̌) ↣ ˆtrue]1 ⋅ [stutt(η̌)]n ⋅ r̃) ∣ [stutt(η̌)]n+1 ⋅ r̃ ∈ α̃(AJBKγ̃(I±))}

[ by Inductive Hypothesis ]
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= {[(τ+(c), ˇfalse) ↣ τ+(c)]1 ⋅ ⊠ ∣ ⊠ ∈ A±JAKγ̃(I±)} ∨

⋁{κ([(c ×̂ η̂, η̌) ↣ c ×̂ d̂]n ⋅ (r̃↓̃τ+(c))) ∣ c ×̂ d̂ ≠ ˆfalse,

c ×̂ η̂ ⊬̃ η̌, [(η̂, η̌) ↣ d̂]n+1 ⋅ r̃ ∈ A±JAKγ̃(I±)} ∨

⋁{[(c ×̂ η̂, η̌) ↣ ˆfalse]1 ∣ [(η̂, η̌) ↣ d̂]n ⋅ r̃ ∈ A±JAKγ̃(I±),

c ×̂ d̂ = ˆfalse, c ×̂ η̂ ⊬̃ η̌} ∨

⋁{κ([(τ+(c), η̌) ↣ τ+(c)]1 ⋅ [stutt(η̌)]n ⋅ r̃↓̃τ+(c)) ∣ [stutt(η̌)]n+1 ⋅ r̃ ∈ A±JAKγ̃(I±)
τ+(c) ⊬̃ η̌} ∨

{[( ˆtrue, τ−({c})) ↣ ˆtrue]1 ⋅ ⊠ ∣ ⊠ ∈ A±JBKγ̃(I±)} ∨

⋁{κ([(η̂, c ×̌ η̌) ↣ d̂]n ⋅ r̃) ∣

[(η̂, η̌) ↣ d̂]n ⋅ r̃ ∈ A±JBKγ̃(I±), η̂ ⊬̃ τ
−({c})} ∨

⋁{κ([( ˆtrue, c ×̌ η̌) ↣ ˆtrue]1 ⋅ [stutt(η̌)]n ⋅ r̃) ∣ [stutt(η̌)]n+1 ⋅ r̃ ∈ A±JBKγ̃(I±)}

= A±Jnow c then A else BKI±

A =A ∥B This case is straightforward by Lemma 4.3.6.

α̃(AJA ∥ BKγ̃(I±)) = α̃(⊔{rA ∥̄ rB ∣ rA ∈ AJAKγ̃(I±), rB ∈ AJBKγ̃(I±)})

= ⋁{α̃(rA ∥̄ rB) ∣ rA ∈ AJAKγ̃(I±), rB ∈ AJBKγ̃(I±)}

[ by Lemma 4.3.6 ]

= ⋁{α̃(rA) ∥̃ α̃(rB) ∣ rA ∈ AJAKγ̃(I±), rB ∈ AJBKγ̃(I±)}

= ⋁{r̃A ∥̃ r̃B ∣ r̃A ∈ α̃(AJAKγ̃(I±)), r̃B ∈ α̃(AJBKγ̃(I±))}

[ by Inductive Hypothesis ]

= ⋁{r̃A ∥̃ r̃B ∣ r̃A ∈ A±JAKI± , r̃B ∈ A±JBKI±}
[ by (4.3.5) ]

= A±JA1 ∥ A2KI±

A = ∃xA1 This case is straightforward by Lemma 4.3.8.

α̃(AJ∃xA1Kγ̃(I)) = α̃(⊔{ ∃̄x r ∣ r ∈ AJA1Kγ̃(I), r is x-self-sufficient})

= ⋁{ α̃(∃̄x r) ∣ r ∈ AJA1Kγ̃(I), r is x-self-sufficient}

[ by Lemma 4.3.8 ]

= ⋁{κ(∃̃x α̃(r)) ∣ r ∈ AJA1Kγ̃(I), r is x-self-sufficient}

[ by (4.3.1) ]

= ⋁{κ(∃̃x r̃) ∣ r̃ ∈ α̃(AJA1Kγ̃(I)), r̃ is abstractly x-self-sufficient}

[ by Inductive Hypothesis ]

= ⋁{κ(∃̃x r̃) ∣ r̃ ∈ A±JA1KI± , r̃ is abstractly x-self-sufficient}

[ by (4.3.6) ]

= A±J∃xA1KI±
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A = p(z)

α̃(AJp(z)Kγ̃(I)) = α̃(⊔{(true,∅) ↣ true ⋅ r ∣ r ∈ γ̃(I)(p(z))})

= ⋁{α̃((true,∅) ↣ true ⋅ r) ∣ r ∈ γ̃(I)(p(z))}

[ by (4.2.23) ]

= ⋁{κ([(τ+(true), τ−(∅)) ↣ τ+(true)]1 ⋅ α̃(r)) ∣ r ∈ γ̃(I)(p(z))}

[ since τ+(true) = ˆtrue and τ−(∅) = ˇfalse ]

= ⋁{κ([( ˆtrue, ˇfalse) ↣ ˆtrue]1 ⋅ r̃) ∣ r̃ ∈ α̃(γ̃(I±(p(z))}))

[ α̃ ○ γ̃ is the identity for M̃
±

]

= ⋁{κ([( ˆtrue, ˇfalse) ↣ ˆtrue]1 ⋅ r̃) ∣ r̃ ∈ I±(p(z))}

[ by (4.3.7) ]

= A±Jp(z)KI±
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Abstract Diagnosis for tccp based on

temporal formulas

Abstract

Automatic techniques for program verification usually suffer the well-known state ex-
plosion problem. Most of the classical approaches are based on browsing the structure
of some form of model (which represents the behavior of the program) to check if a
given specification is valid. This implies that a subset of the model has to be built,
and sometimes the needed fragment is quite huge.

In this chapter, we provide an alternative automatic decision method to check
whether a given property, specified in a linear temporal logic, is valid w.r.t. a tccp
program. Our proposal (based on abstract interpretation techniques) does not require
to build any model at all.

More specifically, we provide an extension of the abstract diagnosis framework
for tccp which works on an abstract domain formed by linear temporal formulas.
This extension encompasses the limitations of the method presented in Chapter 4
where specifications were big and unnatural to be written. Given the impossibility of
defining an abstraction function from the domain of conditional traces into the domain
of temporal formulas, we introduce a “weaker” version of abstract diagnosis which is
based only on the concretization function.

Our proposal intuitively consists in viewing a program P as a formula transformer
and thus, in order to decide the validity of the specification S, we just have to check
if the P -transformation of S implies S itself (i.e., if S is a pre-fixpoint of the transfor-
mation w.r.t. P ). Thus, the final step of the abstract diagnosis process needs to check
whether an implication formula is valid. We provide an automatic decision procedure
for the temporal logic used, which, due to the underlying concurrent constraint model,
has some differences w.r.t. the classical propositional LTL.

Modeling and verifying concurrent and reactive systems is a really complicated task
which is crucial in a lot of modern applications. Thus, the development of automatic and
efficient tools to formal verify these systems is essential. One of the most known techniques
for formal verification of these systems is model checking. Model checking was originally
introduced in [20, 100] to automatically check if a finite-state system satisfies a given
property. It consisted in an exhaustive analysis of the state-space of the system; thus,
the state-explosion problem is its main drawback and, for this reason, many proposals
in the literature try to mitigate it. Some of the more successful ones are the symbolic
approach [17, 68, 13], on-the-fly model checking [71] and the abstract interpretation based
techniques [23, 40]. The idea which is shared by these approaches is to reduce the number
of states of the system.
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The model-checking technique for tccp was first defined in [53], and also in this setting
(optimized) symbolic and abstract versions were later defined [3, 4].

In this chapter, we propose a completely different approach to the formal verification of
LTL properties for concurrent and reactive systems specified in tccp. The linear temporal
logic we use to express specifications, csLTL, is an adaptation of the propositional LTL
logic to the concurrent constraint framework, following the ideas of [94, 44, 45, 116]. It
is expressive enough to represent the abstract semantics of tccp with much precision. In
brief, we formalize a method to validate a specification, expressed by an csLTL formula φ,
of the expected behavior of a tccp program P which does not require to build any model at
all. Namely, we define an extension of the abstract diagnosis for tccp defined in Chapter 4
where the abstract domain is formed by csLTL formulas. This proposal intuitively consists
in viewing P as a formula transformer by means of an (abstract) immediate consequence
operator ḊJP K which works on csLTL formulas. Then, to decide the validity of φ, we
just have to check if ḊJP Kφ (i.e., the P -transformation of φ) implies φ. We provide an
automatic decision procedure for csLTL which, due to the underlying concurrent constraint
model, has some differences w.r.t. the classical propositional LTL [58, 60].

The main motivation behind this proposal is to verify a LTL property for a tccp program
P without building the model of P (which is usually quite big). This approach aims also
to encompass the limitations of the instances presented in the formulation of Chapter 4
where specifications were big and onerous to be written.

The chapter is organized as follows. In Section 5.1 we provide a general scheme of
abstract diagnosis for tccp which is defined parametrically w.r.t. a suitable family of con-
cretization functions. This scheme can be used in case the abstraction function cannot be
provided, as in the case of temporal formulas. In Section 5.2 the csLTL logic is introduced.
In Section 5.3 we define an abstract semantics over csLTL formulas that correctly approx-
imates the small-step behavior of tccp programs. This semantics is formally related to the
concrete semantics of Section 3.1 by means of a concretization function. In Section 5.4
some examples of the application of abstract diagnosis over the domain of csLTL formulas
are illustrated. Finally, in Section 5.5 a tableau construction algorithm for csLTL is pre-
sented in order to automatically check the validity of the abstract diagnosis test. All the
proofs and the most technical definitions and results can be found in the chapter appendix
5.A.

5.1 Abstract Diagnosis for tccp based on concretization func-
tions

Sometimes, defining a Galois Insertion between a concrete and an abstract domain A is
not possible. For instance, this happens in case some concrete element has no best abstract
approximation in A.

Consider, for example, the polyhedra approximation defined in [38]. The authors
approximate a set of vector of reals S ∈ Rn with a polyhedron P such that S ⊆ P . If S is
finite, the best correct approximation of P is the convex hull of S. However, a sphere has
no best upper approximation by a convex polyhedron, since we obtain an infinite strictly
decreasing chain of polyhedrons each one correctly approximating the sphere, but no one
is the best abstract approximation.

Another example is the approximation of traces that represent the behavior of a pro-
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grams by means of temporal logic formulas. In this case, we can have a formula φ that
correctly approximate an infinite trace, but we can always find another formula ψ that is
more precise then φ and is still a correct approximation of the trace. Therefore, as in the
case of polyhedra approximation, no best abstract approximation is available.

In this situation, we cannot use the abstract diagnosis framework defined in Section 4.1
(which is actually parametric w.r.t. a Galois Insertion ⟨α, γ⟩). Therefore, by using ideas
from [35], we propose a new approach to abstract diagnosis which is defined only over the
concretization function γ.

In order to guarantee the correctness of the method, we assume the concretization
function γ to be monotonic, injective and ⊓-distributive. Furthermore, A has to be a
lattice (not necessarily complete) of the form (A, ≤, ⋁, ⋀, ⊺, �).

The notions of correctness and completeness are defined similarly w.r.t. the general
framework of Section 4.1.

Definition 5.1.1 Given a set of declarations D and Sα ∈ IA, which is the specification of
the abstract intended behavior of D over A, we say that

1. D is (abstractly) partially correct w.r.t. Sα if F JDK ⊑ γ(Sα).

2. D is (abstractly) complete w.r.t. Sα if γ(Sα) ⊑ F JDK.

In this framework, symptoms are the differences between F JDK and γ(Sα) and the
notions of abstractly incorrect process declaration and uncovered element are the same of
Definition 4.1.2.

Now consider Dα be a monotonic abstract immediate consequence operator which is
a correct approximation of D, i.e., given D ∈ DΠ

C and Sα ∈ IA, DJDKS ⊑ γ(DαJDKSα).
Theorem 4.1.3 and Theorem 4.1.4 are reformulated as follows by using the new notions

of partial correctness and completeness based on γ.

Theorem 5.1.2 Let D ∈ DΠ
C and Sα ∈ IA.

1. If there are no abstractly incorrect process declarations in D (i.e., DαJDKSα ≤ Sα),
then D is partially correct w.r.t. Sα (i.e., F JDK ⊑ γ(Sα)).

2. Let D be partially correct w.r.t. Sα. If D has abstract uncovered elements, then D
is not complete (i.e., γ(Sα) /⊑ F JDK).

Let us recall that the absence of abstractly incorrect declarations is a sufficient con-
dition for partial correctness, but it is not necessary. Because of the approximation, it
can happen that a (concretely) correct declaration is abstractly incorrect. Hence, abstract
incorrect declarations are in general just a warning about a possible source of errors.

Similarly to the general approach of Section 4.1, an abstract correct declaration cannot
contain an error; thus, no (manual) inspection is needed for declarations which are not
abstractly incorrect. Moreover, as shown by the following theorem, all concrete errors—
that are “visible”—are detected, as they lead to an abstract incorrectness or abstract
uncovered. Intuitively, in this setting, a concrete error is visible if it is possible to express
a formula φ whose concretization reveals the error (i.e., if the logic is expressible enough).
This is stated formally in the following theorem.
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Theorem 5.1.3 Let R be a process declaration for p(x⃗), S ∈ I a concrete specification
and Sα ∈ IA a sound approximation for S (i.e., S ⊑ γ(Sα)).

1. If DJ{R}KS ⋢ γ(Sα) and it exists e such that γ(e) ⊑ DJ{R}KS (p(x⃗)) and e ∧ Sα(p(x⃗)) =
�, then R is abstractly incorrect w.r.t. Sα (on testimony e).

2. If there exists an abstract uncovered element e w.r.t. Sα, then there exists r ∈ γ(e)
such that r ∉ DJ{R}KS (p(x⃗)).

Point 1 can be read as: the concrete error has an abstract symptom which is not
hidden by the approximation on Sα and, moreover, there exists an abstract element e
whose concretization reveals the error.

The main drawback of this setting w.r.t. the one presented in Section 4.1 is that, due
to the lack of a Galois Insertion, the best correct approximation of D cannot be defined.
However, in [38], several methods to obtain a correct approximation of D in the absence
of a best correct approximation are listed.

In the following, we will show an example of lack of best abstract approximation for the
concrete domain M and an instance of this scheme over an abstract domain of temporal
formulas.

5.2 Abstraction scheme

Behavioral properties of tccp programs can be expressed in a natural way by using an
appropriate temporal logic.

To this end, we define an abstract domain of logic formulas which is based on a variation
of the classical Linear Temporal Logic [78]. Following [94, 44, 45, 116], the idea is to replace
atomic propositions by constraints of the underlying constraint system.

Definition 5.2.1 (csLTL formulas) Given a cylindric constraint system C, c ∈ C and
x ∈ Var, formulas of the Constraint System Linear Temporal Logic over C are defined by
using the grammar:

φ ∶∶= ˙true ∣ ˙false ∣ c ∣ ¬̇φ ∣ φ ∧̇ φ ∣ ∃̇x φ ∣ ◯φ ∣ φ U φ.

We denote with csLTLC the set of all temporal formulas over C (we omit C when clear
from the context).

The formulas ˙true, ˙false and connectives ¬̇, ∧̇ have the classical logical meaning. The
atomic formula c ∈ C states that c has to be entailed by the current store. ∃̇x φ is the
existential quantification over the set of variables Var . ◯φ states that φ holds at the next
time instant, while φ1 U φ2 states that φ2 eventually holds and in all previous instants φ1

holds. In the sequel (as usual), we use φ1 ∨̇ φ2 as a shorthand for ¬̇φ1 ∧̇ ¬̇φ2; φ1 →̇ φ2 for
¬̇φ1 ∨̇ φ2; φ1 ↔̇ φ2 for φ1 →̇ φ2 ∧̇ φ2 →̇ φ1; ◇φ for ˙true U φ and ◻φ for ¬̇◇ ¬̇φ. ◇φ holds
if at some point in the future φ is true, and ◻φ holds if φ holds in the current instant and
always in the future.

A constraint formula is an atomic formula c or its negation ¬̇ c. Formulas of the form
◯φ and ¬̇◯φ are called next formulas. Constraint and next formulas are said to be
elementary formulas. Finally, formulas of the form φ1 U φ2 (or ◇φ or ¬̇(◻φ)) are called
eventualities.
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We define the abstract domain F ∶= csLTL/↔̇ (i.e., the domain formed by csLTL formu-
las modulo logical equivalence) ordered by →̇. The algebraic structure (F, →̇, ⋁̇, ⋀̇, ˙true, ˙false)
is a bounded join-semilattice, since:

1. it has a bottom element: ˙false = ⋀̇φ∈csLTL φ;

2. the lub ∨̇ of φ1, φ2 ∈ csLTL, defined as φ1 ∨̇ φ2, exists and it is a temporal formula.

However, this structure is not a complete lattice, since both ⋀̇ and ⋁̇ always exist just for
finite sets of formulas (but not for infinite ones).

The semantics of a temporal formula is typically defined in terms of an infinite sequence
of states which validates it. Here we use conditional traces instead.

As usually done in the context of temporal logics, we define the satisfaction relation
⊧ only for infinite conditional traces. We implicitly transform finite traces (which end
in ⊠) by replicating the last store infinite times. Namely, the trace (η+1 , η

−
1 ) ↣ c1 . . . (η

+
n,

η−n) ↣ cn ⋅ ⊠ becomes (η+1 , η
−
1 ) ↣ c1 . . . (η

+
n, η

−
n) ↣ cn ⋅ (cn,∅) ↣ cn ⋯ (cn,∅) ↣ cn ⋯, while

⊠ becomes (true,∅) ↣ true ⋯ (true,∅) ↣ true ⋯.

Definition 5.2.2 The semantics of φ ∈ F is given by γF∶F→M defined as

γF(φ) ∶= ⊔{r ∈ M ∣ r ⊧ φ}, (5.2.1)

where, for each φ,φ1, φ2 ∈ csLTL, c, d, η+ ∈ C, η− ⊆ C and r, r′ ∈ M, the satisfaction relation
⊧ is defined as:

r ⊧ ˙true (5.2.2a)

r ⊭ ˙false (5.2.2b)

(η+, η−) ↣ d ⋅ r′ ⊧ c iff η+ ⊢ c (5.2.2c)

stutt(η−) ⋅ r′ ⊧ c iff ∀d− ∈ η−. c ⊬ d− and r′ ⊧ c (5.2.2d)

r ⊧ ¬̇φ iff r ⊭ φ (5.2.2e)

r ⊧ φ1 ∧̇ φ2 iff r ⊧ φ1 and r ⊧ φ2 (5.2.2f)

r ⊧ ∃̇x φ iff it exists r′ such that ∃̄x r
′ = ∃̄x r,

r′ x-self-sufficient and r′ ⊧ φ

(5.2.2g)

r ⊧ ◯φ iff r1 ⊧ φ (5.2.2h)

r ⊧ φ1 U φ2 iff ∃i ≥ 1.∀j < i. ri ⊧ φ2 and rj ⊧ φ1 (5.2.2i)

We say that φ ∈ F is a sound approximation of R ∈ M if R ⊑ γF(φ).
By abusing in notation, we extend the notion of ⊧ to sets of formulas in the following

way

r ⊧ Φ ⇐⇒ ∀φ ∈ Φ. r ⊧ φ (5.2.3)

A formula φ is said to be satisfiable if there exists r ∈ M such that r ⊧ φ, while it is said
to be valid if, for all r ∈ M, r ⊧ φ.

All the cases are fairly standard except (5.2.2c) and (5.2.2d). The conditional trace
r = (η+, η−) ↣ d ⋅ r′ prescribes that η+ is entailed by the current store, thus r models all
the constraint formulas c such that η+ ⊢ c. We have to note that, by the monotonicity of



122 5. Abstract Diagnosis for tccp based on temporal formulas

the store during tccp computations, the positive conditions in conditional traces contain
all the information previously added in the constraint store.

Furthermore, by the definition of condition, since η+ cannot be in contradiction with η−,
it holds that neither c is in contradiction with η−. Thus, the conditional trace stutt(η−) ⋅r′

models all the constraint formulas c that are not in contradiction with the set η− and such
that, by monotonicity, c holds in the continuation r′.

Lemma 5.2.3 The function γF is monotonic, injective and ⊓-distributive.

In order to use the classical abstract interpretation approach for Galois Insertions
⟨α, γ⟩, we have to determine if γF admits its adjoint abstraction function. This is equiva-
lent to the existence, for each R ∈ M, of ⋀̇ {φ ∈ F ∣R ⊑ γF(φ)}. However, this is false. For
instance, given R ∶= {(true,∅) ↣ x > 0 ⋅ (x > 0,∅) ↣ x > 1 . . . (x > n,∅) ↣ x > n + 1 . . .},
the set {φ ∣R ⊑ γF(φ)} has no glb (in F). This is equivalent to say that no best abstract
approximation is available for R in F, as explained in Section 5.1.

Thus, in the sequel, we cannot use the classical abstract interpretation approach for
abstract diagnosis based on Galois Insertions ⟨α, γ⟩ (see Section 4.1). Therefore, we use
the above proposed weaker version of abstract diagnosis for join-semilattices which is based
only on the concretization function γ (see Section 5.1).

In the following, we instantiate this framework with the csLTL domain. We first define
an appropriate and sound semantics and, then, we redefine in this setting the notions of
abstractly incorrect declaration and uncovered element.

5.3 csLTL Abstract Semantics

In this section we define an abstract semantics for tccp and we show that is a correct
approximation of the concrete semantics of Section 3.1. This semantics associates to each
tccp program a csLTL formula which approximate its small-step behavior.

The technical core of this semantics definition is the csLTL agent semantics evaluation
function ȦJAK which, given an agent A and an interpretation İ (for the process symbols
of A), builds a csLTL formula which is a sound approximation of the (concrete) behavior
of A. In the sequel, we denote by AΠ

C the set of agents and DΠ
C the set of sets of process

declarations built on signature Π and constraint system C.
Analogously to Definition 5.3.1, we define interpretations over the domain F as func-

tions PC → F modulo variance.

Definition 5.3.1 Let PC ∶= {p(x⃗) ∣ p ∈ Π, x⃗ are distinct variables}. An interpretation
is a function PC → F modulo variance. Two functions I, J ∶PC → F are variants if for
each π ∈ PC there exists a renaming ρ such that (Iπ)ρ = J(πρ). The semantic domain IF
is the set of all interpretations ordered by the point-wise extension of →̇.

Definition 5.3.2 (csLTL Semantics) Given A ∈ AΠ
C and İ ∈ IF, we define the csLTL

semantics evaluation ȦJAK
İ

by structural induction as follows.

ȦJskipK
İ
∶= ˙true (5.3.1a)

ȦJtell(c)K
İ
∶= ◯ c (5.3.1b)

ȦJ∑ni=1 ask(ci) → AiKİ ∶= ◻(⋀̇
n
i=1 ¬̇ ci) ∨̇ ((⋀̇

n
i=1 ¬̇ ci) U ⋁̇

n
i=1 (ci ∧̇ ◯ȦJAiKİ)) (5.3.1c)
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ȦJnow c then A1 else A2Kİ ∶= (c ∧̇ ȦJA1Kİ) ∨̇ (¬̇ c ∧̇ ȦJA2Kİ) (5.3.1d)

ȦJA1 ∥ A2Kİ ∶= ȦJA1Kİ ∧̇ ȦJA2Kİ (5.3.1e)

ȦJ∃xAK
İ
∶= ∃̇x ȦJAK

İ
(5.3.1f)

ȦJp(x⃗)K
İ
∶= ◯ İ(p(x⃗)) (5.3.1g)

Given D ∈ DΠ
C we define the immediate consequence operator ḊJDK∶ IF → IF as

ḊJDK
İ
(p(x⃗)) ∶= ⋁̇ {ȦJAK

İ
∣p(x⃗) ∶− A ∈D}

It can be noticed that Ȧ and Ḋ are monotonic, as stated formally by the following
lemma.

Lemma 5.3.3 For each A ∈ AΠ
C and each D ∈ DΠ

C, ȦJAK and ḊJDK are monotonic.

Let us recall from Chapter 2 a (non trivial) example of tccp program that we use
through this chapter to illustrate the achievements of our proposal.

Example 5.3.4
The following two process declarations model in tccp a part of a railway crossing system
(the full declarations can be found in [6] or in Chapter 2 of this thesis).

controller(C ,G) ∶− ∃C ′,G′ (

now (C = [near ∣ ]) then

tell(C = [near ∣ C ′]) ∥ tell(G = [down ∣ G′]) ∥ controller(C ′,G ′)

else now (C = [out ∣ ]) then

tell(C = [out ∣ C ′]) ∥ tell(G = [up ∣ G′]) ∥ controller(C ′,G ′)

else controller(C ,G))

The controller process uses an input channel C (implemented as a stream) through
which it receives signals from the environment (trains), and an output channel G through
which it sends orders to the gate process. It checks the input channel for a near signal
(the guard in the first now agent), in which case it sends (tells) the order down through
G, links the future values (C ′) of the stream C and restarts the check at the following
time instant (recursive call controller(C ′,G ′)). If the near signal is not detected, then,
the else branch looks for the out signal and (if present) behaves dually to the first branch.
Finally, if no signal is detected at the current time instant (last else branch), then the
process keeps checking from the following time instant (the process call takes one time
instant). The gate process reacts to the signals from the controller:

gate(G ,S) ∶− ∃G′, S′ (

ask(G = [down ∣ ]) →

( tell(G = [down ∣ G′]) ∥ ask(true)100 → (tell(S = [down ∣ S′]) ∥ gate(G′, S′)))

+ ask(G = [up ∣ ]) →

( tell(G = [up ∣ G′]) ∥ ask(true)100 → (tell(S = [up ∣ S′]) ∥ gate(G′, S′))))
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where ask(true)n denotes the n-times repetition of the agent ask(true), and it corresponds
to a delay of n time units. Through the input channel G, orders are received, and the
state of the gate (represented by the stream S) is consequently updated. The ask agent
(with two branches) makes the gate wait (suspend) until one of the guards is entailed, i.e.,
until one of the two orders is received. Once a signal is detected, after 100 time instants,
the state of the gate is appropriately updated and a recursive call is done in order to keep
the gate active (i.e., waiting for the successive order).

Now, we show an example of calculus of the semantics Ḋ for the railway crossing
system.

Example 5.3.5

Consider the set of declarations Drc of Example 5.3.4 and let us use ◯n to abbreviate the
repetition of ◯ n-times. Given İ ∈ IF, with Definition 5.3.2 we compute

ḊJDrcKİ(controller(C ,G))) = φM (İ) ∶= φnear(İ) ∨̇ φout(İ) ∨̇ φcwait(İ)

ḊJDrcKİ(gate(G ,S)) = φg(İ) ∶= (φgwait U (φdown(İ) ∨̇ φup(İ))) ∨̇ ◻φgwait

where

φnear(İ) = ∃̇C′,G′ (C = [near ∣ ] ∧̇ ◯C = [near ∣ C ′] ∧̇

◯G = [down ∣ G′] ∧̇ ◯ İ(controller(C ′,G ′)))

φout(İ) = ∃̇C′,G′ (¬̇(C = [near ∣ ]) ∧̇ ◯C = [out ∣ C ′] ∧̇

C = [out ∣ ] ∧̇ ◯G = [up ∣ G′] ∧̇ ◯ İ(controller(C ′,G ′)))

φcwait(İ) = ¬̇(C = [near ∣ ]) ∧̇ ¬̇(C = [out ∣ ]) ∧̇ ◯ İ(controller(C ,G))

φgwait = ¬̇(G = [down ∣ ]) ∧̇ ¬̇(G = [up ∣ ])

φdown(İ) = ∃̇G′,S′ (G = [down ∣ ] ∧̇ ◯(◯G = [down ∣ S′] ∧̇

◯100(◯S = [down ∣ S′] ∧̇ ◯ İ(gate(G ′,S ′)))))

φup(İ) = ∃̇G′,S′ (G = [up ∣ ] ∧̇ ◯(◯G = [up ∣ G′] ∧̇

◯100(◯S = [up ∣ S′] ∧̇ ◯ İ(gate(G ′,S ′)))))

The three disjoints of φM (İ) match the three possible behaviors of controller(C ,G): when
signal near is emitted by the train (φnear(İ)), when out is emitted (φout(İ)), and when
no signal arrives (φcwait(İ)). Similarly, the formula φg(İ) states that, either the process
waits forever, or when a signal is received, then it changes the state of the gate (φdown(İ)

and φup(İ)).

As stated by the following theorem, Ȧ is a sound approximation of A and Ḋ is a sound
approximation of D.

Theorem 5.3.6 (Correctness of Ȧ and Ḋ) Let A ∈ AΠ
C, D ∈ DΠ

C and İ ∈ IF. Then,
AJAKγF(İ)

⊑ γF(ȦJAK
İ
) and DJDKγF(İ)

⊑ γF(ḊJDK
İ
).
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5.4 Abstract Diagnosis for tccp based on csLTL formulas

As already claimed, given the impossibility of defining a Galois Insertion between M and
F, we cannot use the abstract diagnosis framework for tccp defined in Section 4.1 which
is actually parametric w.r.t. a Galois insertion ⟨α, γ⟩. Instead, we use the weaker version
defined in Section 5.1 which is parametric to a given concretization functions.

Let us reformulate the notions of abstractly incorrect process declaration and uncovered
element in the csLTL context.

Definition 5.4.1 Let D ∈ DΠ
C, R a process declaration for process p, φt ∈ F and Ṡ ∈ IF.

• R is abstractly incorrect w.r.t. Ṡ (on testimony φt) if φt →̇ ḊJ{R}K
Ṡ
(p(x⃗)) and

φt ∧̇ Ṡ(p(x⃗)) = ˙false, or equivalently if ḊJ{R}K
Ṡ
(p(x⃗)) ↛̇ Ṡ(p(x⃗)).

• φt is an uncovered element for p(x⃗) w.r.t. Ṡ if φt →̇ Ṡ(p(x⃗)) and φt ∧̇ ḊJDK
Ṡ
(p(x⃗)) =

˙false.

From Theorem 5.1.2 and Theorem 5.1.3 we can summarize the main results of abstract
diagnosis over csLTL formulas as follows:

• If ḊJDK
Ṡ
→̇ Ṡ then D is partially correct w.r.t. Ṡ (i.e., F JDK ⊑ γ(Ṡ)).

• Let D be partially correct w.r.t. Ṡ. If D has abstract uncovered elements then D is
not complete (i.e., γ(Ṡ) /⊑ F JDK).

• All concrete errors—that are “visible”— are detected, as they lead to an abstract
incorrectness or abstract uncovered. A concrete error is visible if it is possible to ex-
press a formula φ whose concretization reveals the error (i.e., if the logic is expressible
enough).

We show some examples of this abstract diagnosis approach by using the abstract
domain F and the concretization function γF (5.2.1). As usual, in the following examples,
we borrow from [6] the notation for last entailed value of a stream: X=̇c holds if the last
instantiated value in the stream X is c.

Example 5.4.2
Assume we want to check (for the railroad crossing system in Example 5.3.4) whether it
holds that each time a near signal arrives from a train, the gate eventually is down. To
model this property, we define the specification Ṡdown as:

Ṡdown(controller(C ,G)) ∶= φordersent ∶= ◻(C=̇near →̇ ◇(G=̇down))

Ṡdown(gate(G ,S)) ∶= φgatedown ∶= ◻(G=̇down →̇ ◇(S=̇down))

To check whether ḊJDrcKṠdown
→̇ Ṡdown (see Example 5.3.5) we have to check if φM (Ṡdown) →̇

φordersent and φg(Ṡdown) →̇ φgatedown . Recall the fixpoint characterization of the temporal
operators, i.e., ◻p = p ∧̇ ◯◻p and ◇p = p ∨̇ ◯◇p. It can be seen that each of the three
disjoints of φM (Ṡdown) implies φordersent . For φg(Ṡdown), while the process is waiting, the
antecedent of both implications cannot be derived, thus the formula is true. Moreover,
when the order down arrives (in the second component of the until), it also occurs that
the state is updated (see φdown in Example 5.3.5). Thus φg(Ṡdown) →̇ Ṡdown and then
ḊJDrcKṠdown

→̇ Ṡdown . Hence, by Theorem 4.1.3, Drc is partially correct w.r.t. Ṡdown .
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Example 5.4.3
In this example we show how our technique detects an error in a buggy set of declarations
obtained from Drc by removing the instruction tell(G = [up ∣ G′]) in the definition of
process controller. To avoid misunderstandings, we call the modified process controller′

and let R be the modified process definition.
We want to check whether the order up is sent whenever the signal out is received.

Thus, we define the specification:

φ ∶= Ṡup(controller ′(C ,G)) ∶= ◻((C=̇out) →̇ ◇(G=̇up))

We have

φ′ ∶= ḊJ{R}K
Ṡup

(controller ′(C ,G)) = φ′near ∨̇ φ
′
out ∨̇ φ

′
cwait

where

φ′near = ∃̇C′,G′ (C = [near ∣ ] ∧̇ ◯C = [near ∣ C ′] ∧̇

◯G = [down ∣ G′] ∧̇ ◯ Ṡup(controller ′(C ′,G ′)))

φ′out = ∃̇C′,G′ (¬̇(C = [near ∣ ]) ∧̇ C = [out ∣ ]∧̇

◯(C = [out ∣ C ′] ∧̇ ◯ Ṡup(controller ′(C ′,G ′))))

φ′cwait = ¬̇(C = [near ∣ ]) ∧̇ ¬̇(C = [out ∣ ]) ∧̇ ◯ Ṡup(controller ′(C ,G))

We detect an incorrectness of R w.r.t. Ṡup on testimony φt ∶= φ′out ∧̇ ◻G=̇down since
φt →̇ φ′ but φt ∧̇ φ = ˙false.

Example 5.4.4
Let us now check a “wrong” property for the gate process. We define the specification:

φupdown ∶= Ṡwrong(gate(G ,S)) ∶= ◇(G=̇up ∨̇ G=̇down)

which states that eventually in the future either the order up or down is sent by the gate.
We have

φg(Ṡwrong) ∶= ḊJDrcKṠwrong
(gate(G ,S))

=(φgwait U (φdown(Ṡwrong) ∨̇ φup(Ṡwrong))) ∨̇ ◻φgwait

It can be noticed that φg(Ṡwrong) /̇→ φupdown , since ◻φgwait = ◻(¬̇(G=̇up) ∧̇ G=̇down)

does not imply ◇(G=̇up ∨̇ G=̇down).
This is a warning about a possible error in the definition of gate process w.r.t. the

specification Ṡwrong .

Example 5.4.5 (Pathological cases)
Let Dp ∶= {q(y) ∶− now y = 1 then q(y) else q(y)}. It is worth noticing that this program is
a loop that does nothing at all since, independently from the check if x = 1, it calls itself.

Consider the specification Ṡp(q(y)) ∶= ◇(y = 1), we have

ḊJDpKṠp(q(y)) = (x > 0 ∧̇ ◇x = 1) ∨̇ (¬̇x > 0 ∧̇ ◇x = 1), thus ḊJDpKṠp →̇ ◇(y = 1)

and, by Theorem 4.1.3, Dp is partially correct w.r.t. Ṡp. However, it can be noticed that
y = 1 is not explicitly added by the process q(y).
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Example 5.4.6
Let Dx ∶= {p(x) ∶− now x = 1 then skip else (tell(x = 1) ∥ p(x))}. For specification
Ṡx(p(x)) ∶= ◇(x = 1), which states that eventually in the future x = 1 is entailed by the
constraint store, we have that

ḊJDxKṠx(p(x)) = (x = 1) ∨̇ (¬̇x = 1 ∧̇ ◯x = 1 ∧̇ ◯◇(x = 1)).

Thus ḊJDxKṠx →̇ ◇(x = 1) and, by Theorem 4.1.3, Dx is partially correct w.r.t. Ṡx. In
fact, if x = 1 is entailed by the current constraint store, the program stops, otherwise the
else branch is taken and x = 1 is added in the constraint store by the tell agent, in both
cases x = 1 is eventually entailed.

Example 5.4.5 shows a negative phenomenon of our methodology, which in general hap-
pens for sets of declarations D where ḊJDK has more than one fixpoint (this essentially
happens when D contains a loop which does not produce contributes, not for meaningful
programs). In such situation we can have that the actual behavior does not model a speci-
fication Ṡ which is a non-least fixpoint of ḊJDK, but we do not detect abstractly incorrect
declarations since Ṡ is a fixpoint. However, if Ṡ(p(x⃗)) is assumed to hold for each process
p(x⃗) defined in D and ḊJDK

Ṡ
→̇ Ṡ, then F JDK satisfies Ṡ.

To conclude this section, we would like to point out that with our method we have
validated/unvalidated all the properties of systems already present in the tccp literature.

5.5 An automatic decision procedure for csLTL

In order to make our abstract diagnosis approach effective, we need to define an automatic
decision procedure to check the validity of the csLTL formulas that show up when checking
a property. In particular, we need to handle csLTL formulas of the form ψ →̇ φ, where ψ
corresponds to the computed approximated behavior of the program, and φ is the abstract
intended behavior of the process.

We impose a restriction on the specification φ: we do not allow the use of existential
quantifications. Actually, this restriction is quite natural in our context since, in general,
we are interested in proving properties related to the visible behavior of the program, not
to the local variables. In contrast, negation can be applied to any formula φ (not only to
constraints).

In this section, we extend the tableau construction for Propositional LTL (PLTL) of
[60, 57] in order to deal with csLTL formulas. We need to adapt the method to our context
due to three issues:

1. The structures on which the logic is interpreted are different. In our case, traces
(sequences of states) are monotonic, meaning that the information in each state
always increases.

2. The logic itself is a bit different from PLTL since propositions are replaced by con-
straints in C.

3. We have to handle existential quantification over variables of the underlying con-
straint system. This does not mean that we are dealing with a first-order logic as
will become clear later.
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α A(α)

R1 ¬̇ ¬̇φ {φ}

R2 φ1 ∧̇ φ2 {φ1, φ2}

R3 ¬̇◯φ {◯¬̇φ}

β B1 (β) B2 (β)

R4 ¬̇(φ1 ∧̇ φ2) {¬̇φ1} {¬̇φ2}

R5 ¬̇(φ1 U φ2) {¬̇φ1, ¬̇φ2} {φ1, ¬̇φ2, ¬̇◯(φ1 U φ2)}

R6 φ1 U φ2 {φ2} {φ1, ¬̇φ2,◯((Γ∗ ∧̇ φ1) U φ2)}

Figure 5.1: α- and β-formulas rules

In the following, we first present the basic rules that are used during the construction
of the tree associated to the tableau. Then we present the algorithm that implements the
process of construction of the tree.

5.5.1 Basic rules for a csLTL tableau

Classic tableaux algorithms are based on the systematic construction of a graph which is
used to check the satisfiability of the formula. In [58] the authors present a first algorithm
that does not need auxiliary structures (such as graphs) to decide about the satisfaction
of the formula. This makes this approach more suitable for automatization. In [60, 57]
this algorithm was slightly modified and improved in order to gain more efficiency.

A tableau procedure is defined by means of rules that build a tree whose nodes are
labeled with sets of formulas. If all branches of the tree are closed, then the formula has
no models. Otherwise, we can obtain a model that satisfies the formula from an open
branch. Let us introduce the basic rules for the csLTL case. As usual, we present just the
minimal set of rules.

A tableau rule is applied to a node n labeled with the set of formulas L(n). Each
rule application requires a previous selection of a formula φ from L(n). We call context
the set of formulas L(n) ∖ {φ} and we denote it with Γ. Conjunctions are α-formulas and
disjunctions β-formulas. Figure 5.1 presents the rules for α− and β−formulas.

Tables in Figure 5.1 are interpreted as follows. Each row in a table represents a rule.
Each time that an α−rule is applied to a node of the tree, a formula of the node matching
the pattern in column α is replaced in a child node by the corresponding A(α). For the
β-rules, two children nodes are generated, one for each column B1 (β) and B2 (β).

Almost all the rules are standard. However, Rule R6 uses the so-called context Γ∗,
which is defined as Γ∗ ∶= ⋁̇γ∈Γ ¬̇γ. The use of contexts is the mechanism to detect the
loops where no formula changes, thus allowing to mark branches containing eventually
formulas as open. This kind of rules were first used in [59]. The idea is that, by using
contexts, loops where no formula changes are discarded since they cannot close a branch.

Note that there is no rule defined for the ◯ operator. In fact, the next(Φ) function
transforms a set of elementary formulas Φ into another set: next(Φ) ∶= {φ ∣ ◯φ ∈ Φ} ∪

{¬̇φ ∣ ¬̇◯φ ∈ Φ} ∪ {c ∣ c ∈ Φ, c ∈ C}. This operator is different from the corresponding one
of PLTL in that, in addition to keep the internal formula of the next formulas, it also passes
the constraints that are entailed at the current time instant to the following one. This
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makes sense for tccp computations since, as already mentioned, the store in a computation
is monotonic, thus no information can be removed and it happens that c always implies
◯ c.

The next operator is a key notion in the kind of tableaux defined in [58, 60, 57]. This
operator allows one to identify stages in a tableau which represent time instants in the
model.

We show that α- and β-formulas rules and the next operator preserve the satisfiability
of a set of formulas.

Lemma 5.5.1 Given a set of formulas Φ, an α-formula α and a β-formula β:

1. Φ ∪ {α} is satisfiable ⇔ Φ ∪A(α) is satisfiable;

2. Φ ∪ {β} is satisfiable ⇔ Φ ∪B1 (β) or Φ ∪B2 (β) is satisfiable;

3. if Φ is a set of elementary formulas, Φ is satisfiable ⇔ next(Φ) is satisfiable;

A second main difference w.r.t. the PLTL case regards the existential quantification.
The csLTL existential quantification does not correspond to the first-order logic one. It is
introduced to model information about local variables, thus, the formula ∃̇x φ can be seen
as the formula φ where the information about x is local.

We define a specific rule for the ∃̇ case: when the selected formula of a given node is of
the form ∃̇x φ, it is created a node, child of n, whose labeling is that of n except that the
formula ∃̇x φ is replaced by φ[y/x] with y fresh variable. Correctness of this rule derives
from the following lemma, which shows that ∃̇x φ and φ are equi-satisfiable.

Lemma 5.5.2 Let φ ∈ csLTL, ∃̇x φ is satisfiable ⇐⇒ φ is satisfiable.

Corollary 5.5.3 Let Φ ⊆ csLTL such that y ∈ Var does not appear in Φ (y is a fresh
variable) and let φ ∈ csLTL. Then, Φ∪{∃̇x φ} is satisfiable ⇐⇒ Φ∪{φ[y/x]} is satisfiable.

Proof.

Follows directly from Lemma 5.5.2. x does not appear in Φ, thus the local variable x of φ
is independent from any other variable in Φ.

Intuitively, the renaming of a local variable x with a fresh variable is performed in
order to avoid a clash between x and another variable with the same name that might
appear in the tableau.

This approach works in our context since the operator ∃̇x does not correspond to
the existential quantifier of classical first-order LTL. Instead, it models the fact that the
variable x is local to the process of interest. In fact, Lemma 5.5.2 and Corollary 5.5.3 do
not hold in the first-order LTL in general, as shown by the following counterexample.

Example 5.5.4

Consider the first-order LTL formula φ ∶= ◻(∃̇x(x = 26 ∧̇ ◯x ≠ 26)) where ∃̇ is interpreted
as the classical first order existential quantifier. It can be noticed that φ is satisfiable (in
the classical fist order LTL interpretation with flexible variables) since it exists a sequence
of stores that is a model of φ, i.e., (x = 26) ⋅ (x ≠ 26 ∧ y = 26) ⋅ (y ≠ 26 ∧ z = 26)⋯.
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Consider now the formula obtained by eliminating the existential quantifier in φ and
by renaming x with a fresh name: φ′ ∶= ◻(x′ = 26 ∧̇ ◯x′ ≠ 26). It can be noticed that φ′

is not satisfiable since it requires both x′ = 26 and x′ ≠ 26 to hold from the second time
instant on. Thus, in classical first order LTL φ is satisfiable but φ′ not.

Let us now interpret φ and φ′ in our csLTL framework. In tccp, the store is monotonic,
thus variables are not flexible and cannot change their values as time passes. In this case
both formulas are satisfiable: consider the conditional traces r ∶= (x = 26,∅) ↣ false ⋅(false,
∅) ↣ false ⋅ ⊠ and r′ ∶= (x′ = 26,∅) ↣ false ⋅ (false,∅) ↣ false ⋅ ⊠. From Definition 5.2.2 it
follows that r ⊧ φ and r′ ⊧ φ′. Therefore, in csLTL both φ and φ′ are satisfiable.

5.5.2 Semantic csLTL tableau

In this section, we present the notion of tableau for our csLTL formulas following the ideas
of [60, 57]. For sake of clarity, since we borrow some definitions and notions from that
work, in this section we skip some formal definitions (which can be find in the chapter
appendix).

A tableau TΦ for a set of formulas Φ is a tree-like structure where each node n is labeled
with a set of csLTL formulas L(n). The root is labeled with the set of formulas Φ whose
satisfiability/unsatisfiability is needed to check; Then, children of nodes are the result of
applying the basic rules of Subsection 5.5.1. The algorithm in which these nodes are built
is given in the following subsection. Nodes with no children are called leaf nodes.

Definition 5.5.5 (csLTL tableau) A csLTL tableau for a finite set of formulas Φ is a
tuple TΦ = (Nodes, nΦ,L,B ,R ) such that:

1. Nodes is a finite non-empty set of nodes;

2. nΦ ∈ Nodes is the initial node;

3. L ∶ Nodes → ℘(csLTL) is the labeling function that associates to each node the for-
mulas which are true in that node; the initial node is labeled with Φ;

4. B is the set of branches such that exactly one of the following points holds for every
b = n0, . . . , ni, ni+1, . . . , nk ∈ B and every 0 ≤ i < k:

(a) for an α-formula α ∈ L(ni), L(ni+1) = {A(α)} ∪ L(ni) ∖ {α};

(b) for a β-formula β ∈ L(ni), L(ni+1) = {B1 (β)} ∪ L(ni) ∖ {β} and there exists
another branch in B of the form b′ = n0, . . . , ni, n

′
i+1, . . . , n

′
k such that L(n′i+1) =

{B2 (β)} ∪ L(ni) ∖ {β} ;

(c) for an existential quantified formula ∃̇x φ
′ ∈ L(ni), L(ni+1) = {φ′′} ∪ L(ni) ∖

{∃̇x φ
′} where φ′′ ∶= φ′[y/x] with y fresh variable;

(d) in case L(ni) is a set formed only by elementary formulas, L(ni+1) = next(L(ni)),
where next(Φ) ∶= {φ ∣ ◯φ ∈ Φ} ∪ {¬̇φ ∣ ¬̇◯φ ∈ Φ} ∪ (Φ ∩C).

A branch b ∈ B is said to be maximal if it is not a proper prefix of another branch in
B.
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Rules 4a and 4b are standard, replacing α and β-formulas with one or two formulas
according to the matching pattern of rules in Figure 5.1, except for Rule R6 that uses the
so-called context Γ∗, which is defined in the following. The next operator used in Rule 4d
is different from the corresponding one of PLTL since it also preserves the constraint
formulas. This is needed for guaranteeing correctness since, as already mentioned, in tccp
computations the store is monotonic, thus (c →̇ ◯ c and) constraint information has to be
permanent.

Finally, Rule 4c is specific for the ∃̇ case. ∃̇x is removed after renaming x with a fresh
variable.

Definition 5.5.6 A node in the tableau is inconsistent if it contains

• a couple of formulas φ, ¬̇φ, or

• the formula ˙false, or

• a constraint formula ¬̇ c′ such that the merge c of all the (positive) constraint formulas
c1, . . . , cn in the node (c ∶= c1 ⊗ ⋅ ⋅ ⋅ ⊗ cn) is such that c ⊢ c′.

The last condition for inconsistence of a node is particular to the ccp context. Since
we are dealing with constraints that model partial information, it is possible to have an
implicit inconsistence, in the sense that we need the entailment relation to detect it.

An inconsistent node does not accept any rule application. When a branch contains
an inconsistent node, it is said to be closed, otherwise it is open.

By Lemma 5.5.1 and by Definition 5.5.5, it can be noticed that every closed branch
contains only unsatisfiable sets of formulas. Open branches are not necessarily satisfiable
since they could be prefixes of a closed one.

Similarly to the PLTL case, there exists only a finite number of different labels in
a tableau (as stated formally by Proposition 5.A.11). Thus, if there exists an infinite
branch b = n0, n1, . . . nk . . ., it necessarily contains a cycle (i.e., contains infinitely many
repetition of nodes with the same label). These branches are called cyclic branches and
can be finitely represented as path(b) = n0, n1, . . . , nj , (nj+1, . . . , nk)

ω when L(nk) = L(nj)
for 0 ≤ j < k. Every branch of a tableau is divided into stages, denoted by stages(b). A
stage is a sequence of consecutive nodes between two consecutive applications of the next
operator. We abuse of notation and denote by L(s) the labeling of a stage s defined as

⋃n∈s L(n). It can be noticed that if b contains a cyclic sequence of nodes, then stages(b)
is a cyclic sequence of stages.

We borrow from [58, 60, 57] the characterization of fulfilled eventually formula in a
path of the tableau, namely when it is satisfied. We say that, when an eventually formula
φ1 U φ2 (or ◇φ2) belongs to the labeling of a stage s in a path, it is fulfilled if there
exists a subsequent stage s′ such that φ2 ∈ L(n′). A sequence of stages S is fulfilling if all
the eventually formulas in its labeling are fulfilled in S and a branch b is fulfilling if the
sequences of stages in its paths are fulfilling.

Finally, an open branch is expanded if it is fulfilling and all its stages are saturated.

Definition 5.5.7 ([60, 57]) A stage s is saturated if no α-, β- or hiding rule can be
applied to any of its nodes.

An eventuality formula φ1 U φ2 (or ◇φ2) that belongs to the labeling of a stage s in a
branch is fulfilled if there exists a subsequent stage s′ such that φ2 ∈ L(n′).
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A sequence of stages S is fulfilling if all the eventuality formulas are fulfilled in S and
a branch b is fulfilling if all stages(b) are fulfilling.

An open branch is expanded if it is fulfilling and all its stages are saturated.
A tableau is called expanded if every maximal branch is either expanded or closed.
An expanded tableau is closed if every branch ends in an inconsistent node, otherwise

it is open.

These notions are needed to formalize the tableau construction since only branches
that are non-expanded and open are selected to be further developed.

Definition 5.5.8 (expanded csLTL tableau [60, 57]) A tableau is called expanded if
every branch is expanded or closed. An expanded tableau is closed if every branch ends in
an inconsistent node, otherwise it is open.

5.5.3 A systematic csLTL tableaux construction

We can define an algorithm to automatically build an expanded csLTL tableau (called
systematic tableau) for a given set of formulas Φ along the lines of the one in [60, 57].
The construction consists in selecting at each step a non-expanded branch that can be
extended by using α or β rules or ∃̇ elimination. When none of these can be applied,
the next operator is used to pass to the next stage. When dealing with eventualities, to
determine the context Γ∗ in Rule R6, it is necessary to distinguish the eventuality that
is being unfolded in the path. Given a node n and φ ∈ L(n), Γ ∶= L(n) ∖ {φ}. Then,
when Rule R6 is applied to a distinguished eventuality, we set Γ∗ ∶= ⋁̇γ∈Γ ¬̇γ; otherwise
Γ∗ ∶= true. If a node does not contain any distinguished eventuality, then the algorithm
distinguishes one of them and rule R6 is applied to it. Each node of the tableau has at
most one distinguished eventuality.

The algorithm marks nodes when they cannot be further processed. In particular, a
node is marked as closed when it is inconsistent and is marked as open when it contains just
constraint formulas or when it is the last node of an expanded branch (all the eventualities
in the branch are fulfilled).

Definition 5.5.9 (Systematic Tableau Algorithm) Given a finite set of formulas Φ,
the systematic tableau TΦ is built by repeatedly selecting an unmarked leaf node l and
applying, in order, one of the points shown below.

1. Select an eventuality in l (if there is at least one) and distinguish it.

2. If l is an inconsistent node, then mark it as closed (×).

3. If L(l) is a set of constraint formulas, mark l as open (⊙).

4. Choose φ ∈ L(l) such that φ is not an elementary formula and it is not the distin-
guished eventuality. Then,

(a) if φ is an existential quantified formula ∃̇x φ
′, then create a new node l′ as a

child of l and label it as L(l′) = (L(l) ∖ {φ}) ∪ {φ′}, where φ′ ∶= φ[y/x] with y
fresh variable;

(b) if φ is an α-formula, create a new node l′ as a child of l and label it as L(l′) =
(L(l) ∖ {φ}) ∪A(φ) by using the corresponding rule in Figure 5.1;
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(c) if φ is a β-formula, create two new nodes l′ and l′′ as children of l and label them
respectively as L(l′) = (L(l) ∖ {φ}) ∪ B1 (φ) and L(l′′) = (L(l) ∖ {φ}) ∪ B2 (φ)
by using the corresponding rule in Figure 5.1. For Rule R6, when φ is an
eventuality, we choose Γ∗ ∶= true.

5. When all the non distinguish formulas have been selected, apply Rule R6 with Γ∗ ∶=

⋁̇γ∈Γ ¬̇γ to the distinguish eventuality φ: create two new nodes l′ and l′′ respectively
as children of l and label them as L(l′) = (L(l) ∖ {φ}) ∪ B1 (φ) and L(l′′) = (L(l) ∖
{φ}) ∪B2 (φ). Then, distinguish the next formula in B2 (β);.

6. If L(l) is a set of elementary formulas, then

(a) if L(l) = L(l′) for l′ ancestor of l (i.e., we detect a cycle), take the oldest ances-
tor of l that is labeled as L(l) (denote it by l′′) and check if all the eventualities
in the path between l′′ and l have been distinguished in such path. In this case
mark l as open (⊙). Otherwise, apply the next operator: create a new node
l′′′ as child of l and label it as L(l′′′) = next(L(l)). Then, distinguish a new
eventuality in L(l′′′) following a fair strategy.

(b) If no cycle has been detected, apply the next operator: create a new node l′ as
child of l and label it as L(l′) = next(L(l)). If φ is the distinguished formula in
l and next(φ) = φ′, φ′ becomes the distinguished eventuality in l′. Otherwise,
distinguish a new eventuality in L(l′) following a fair strategy.

The construction terminates when every branch is marked.

By construction, each stage in the systematic tableau TΦ for Φ is saturated. In order to
ensure the termination of the algorithm it is necessary to use a fair strategy to distinguish
eventualities, in the sense that every eventuality in an open branch must be distinguished
at some point. This assumption and the fact that, given a finite set of initial formulas,
there exist only a finite set of possible labels in a systematic tableau, imply termination
(as stated formally by Lemma 5.5.10).

It is worth noticing that, by the application of the rules in Figure 5.1, when both φ
and ¬φ belong to the labeling of a stage in a branch b, then any branch prefixed by b is
closed. Moreover, by construction, non-fulfilled undistinguished eventualities in a branch
are maintained until they are fulfilled or they become distinguished.

One key result of the tableau in [60, 57] that we preserve is that if a distinguished
eventuality is not fulfilled in an expanded branch b, then we can mark the branch as
closed. This is because if we apply Rule R6, then we get a contradiction with the context
of the eventuality.

Hence, we have that every distinguished eventuality in a cyclic branch b of TΦ is
fulfilled, because otherwise b would be closed and then not cyclic. Also, by construction
and the above properties, b is open if and only if the last node of b contains only constraint
formulas, or b is cyclic and all its eventualities are fulfilled in b.

Lemma 5.5.10 The algorithm of Definition 5.5.9 when using a fair strategy for the se-
lection of eventualities, given as input a finite set Φ ⊆ csLTL, terminates and builds an
expanded tableau for TΦ.
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5.5.4 Soundness and completeness

Let us now show that the proposed algorithm is sound and complete for proving the
satisfiability/unsatisfiability of csLTL formulas.

Theorem 5.5.11 (Soundness) If there exists a closed systematic tableau for Φ ⊆ csLTL,
then Φ is unsatisfiable.

In order to prove completeness, we need to define an auxiliary function stores that,
given a sequence of stages of the tableau, builds a suitable conditional trace which joins
all the accumulated information in a stage at each time instant. We abuse of notation and
write ε the empty sequence of stages. Recall that ⊗ is the join operation of the constraint
system and ⊗∅ = true.

stores(ε) = ε

stores(s ⋅ S) = (d,∅) ↣ d ⋅ stores(S) where d =⊗{c ∣ c ∈ L(n) ∩C, n ∈ s}

By definition of next, which in our case propagates the constraints from one stage to the
following, the conditional trace r resulting of applying stores to a sequence of stages S is
monotone. Furthermore, since all the negative conditions are empty, r is also consistent.

We show that, given a systematic tableau TΦ built for Φ, we can compute a model for
Φ from every open branch b in TΦ.

Lemma 5.5.12 Let b be an open expanded branch in the systematic tableau TΦ for Φ ⊆

csLTL. Given the sequence of stages S in path(b), then stores(S) ⊧ Φ.

Theorem 5.5.13 (Completeness) If Φ ⊆ csLTL is satisfiable, then there exists a finite
open tableau for Φ.

5.5.5 Application of the tableau

The systematic tableau algorithm of Definition 5.5.9 can be used to check the implication
resulting from the application of abstract diagnosis to the domain of csLTL formulas (Sec-
tion 5.4). Thanks to Theorem 5.5.11, to check the validity of a formula of the form ψ →̇ φ,
with φ = Ṡ(p(x⃗)) and ψ = ḊJDK

Ṡ
(p(x⃗)), we just have to build the tableau for its negation

T¬̇(ψ→̇φ) and check if it is closed or not. If it is, we have that D is abstractly correct.
Otherwise, by the following Proposition 5.5.14, we have that from T¬̇(ψ→̇φ) we can

extract an explicit testimony ϕ of the abstract incorrectness of D, since ϕ →̇ ḊJDK
Ṡ
(p(x⃗))

and ϕ ↛̇ Ṡ(p(x⃗)).

Proposition 5.5.14 Let TΦ be an open systematic tableau for Φ = {ψ, ¬̇φ}, b be an open
branch in TΦ, ϕi be the conjunction of the constraint formulas occurring in the i-th stage
of b and ϕ be ϕ1 ∧̇ ◯ϕ2 . . . ∧̇ ◯

nϕn. Then ϕ →̇ ψ and ϕ ↛̇ φ.

The construction of ψ = ḊJDK
Ṡ
(p(x⃗)) is linear in the size of D. The systematic

tableau construction of ¬̇(ψ →̇ φ) (from what said in [60]) has worst case O(2O(2∣ ¬̇(ψ→̇φ)∣)).
However, the worst-case asymptotic behavior in this context is quite meaningless since it
is not very realistic to think that the formulas of the specification should grow much (big
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formulas are difficult to comprehend and in real situations people would hardly try even
to imagine them). Consequently, we would not have big implications ψ →̇ φ, since ψ is
bounded by φ. Moreover, note that tableau explosion is due to nesting of eventualities
and in practice we have really few of them. Therefore, in real situations, we do not expect
that (extremely) big tableaux will be built.

Let us show two examples of construction of the systematic tableaux for two formulas
of this kind.

Example 5.5.15
Let us assume that we are trying to check whether process

R ∶= p(y) ∶− ∃x (now y = 1 then tell(x = 5) ∥ p(y) else tell(y = 1))

satisfies Ṡ(p(x⃗)) ∶= ◇(y = 1). Since ḊJ{R}K
Ṡ
= ∃̇x φ, where

φ = (y = 1 ∧̇ ◯x = 5 ∧̇ ◯(◇ y = 1)) ∨̇ (¬̇ y = 1 ∧̇ ◯ y = 1)

Thus, we have to check if ∃̇x φ →̇ ◇(y = 1). Figure 5.2 shows the systematic tableau
built for the negation of the formula, i.e., ∃̇x φ ∧̇ ◻ ¬̇(y = 1). Arrows labeled with α and

∃̇x φ ∧̇ ◻(¬̇ y = 1)

α

∃̇x φ,◻(¬̇ y = 1)

∃

φ′,◻(¬̇ y = 1)

β

y = 1 ∧̇ ◯x′ = 5 ∧̇ ◯(◇ y = 1),◻(¬̇ y = 1)

α

y = 1,◯x′ = 5,◯(◇ y = 1),◻(¬̇ y = 1)

α

y = 1,◯x′ = 5,◯(◇ y = 1),

¬̇ y = 1,◯◻(¬̇ y = 1)

×

¬̇ y = 1 ∧̇ ◯ y = 1,◻(¬̇ y = 1)

α

¬̇ y = 1,◯ y = 1,◻(¬̇ y = 1)

α

¬̇ y = 1,◯ y = 1,◯(◻(¬̇ y = 1))

X

y = 1,◻(¬̇ y = 1)

α

y = 1, ¬̇ y = 1,◯(◻(¬̇ y = 1))

×

Figure 5.2: Tableau for ∃̇x φ →̇ ◇ y = 1 of Example 5.5.15.

β correspond to the application of α and β rules, respectively; arrows labeled with X
represent the application of the next operator. Finally, arrows labeled with ∃ correspond
to the elimination of the existential quantification.



136 5. Abstract Diagnosis for tccp based on temporal formulas

In the example, the first step uses the rule for the conjunction. Then, the second step
involves the elimination of the existential quantification for ∃̇x φ, with φ′ we indicate the
renaming of φ where x is replaced by the fresh variable x′.

The formula φ′ is then selected for a β step (disjunction). The branch on the left is
closed after two steps since y = 1 and ¬̇ y = 1 both belong to the node labeling.

The branch on the right, first flattens the conjunction and then applies the next rule.
Note that the negation of a constraint is not kept in the following time instant. We recall
that negation means “not entailment” (in contrast to meaning that the contrary is true),
thus, in the future, the constraint could become true.

Since both branches are closed, we know that the formula ∃̇x φ ∧̇ ◻ ¬̇(y = 1) is not
satisfiable, thus its negation ∃̇x φ →̇ ◇(y = 1) is valid.

In the context of abstract diagnosis, this proves that the program is abstractly correct
w.r.t. the csLTL specification.

Example 5.5.16

Let us consider a program with a single process declaration D ∶= {p(y) ∶− A}, where

A ∶= ∃x (now y = 1 then (tell(x = 5) ∥ p(y)) else tell(y = 1))

Now, suppose that we want to check that the constraint y = 1 is always entailed by the
store. The corresponding specification is Ṡ(p(y)) = ◻(y = 1).

The csLTL-semantics Ḋ for p(y) using the given specification as interpretation is
∃̇x ((y = 1 ∧̇ ◯x = 5 ∧̇ ◯(◻ y = 1)) ∨̇ (¬̇ y = 1 ∧̇ ◯ y = 1)). Let us abbreviate the body of
the existential quantification as φ. To check whether the process p(y) is correct w.r.t. the
property, we have to show that ∃̇x φ →̇ ◻(y = 1) is valid.

Figure 5.3 shows part of the (finite) tableau that proves the satisfiability of the formula
∃̇x φ ∧̇ ◇(¬̇ y = 1). This means that its negation, ∃̇x φ →̇ ◻(y = 1), is not valid. In the
context of abstract diagnosis, although the formula is actually not satisfied by the program,
because of the loss of precision due to the approximation, this is only a warning about the
possible incorrectness of the program w.r.t. the csLTL specification.

Notice that the second step involves the elimination of the existential quantification
∃̇x: we denote with φ′ the renaming of φ where x is replaced by the fresh variable x′.
Furthermore, Rule R6 is applied twice to deal with the distinguished eventuality ◇(¬̇ y =
1).

5.6 Related Work

A Constraint Linear Temporal Logic is defined in [116] for the verification of ntcc, which
shares with tccp the concurrent constraint nature and the non-monotonic behavior. A
fragment of the proposed logic, the restricted negation fragment where negation is only
allowed for state formulas, is shown to be decidable. However, no efficient decision pro-
cedure is given (apart from the proof itself). Moreover, the verification results are given
for the locally-independent fragment of ntcc, which avoids the non-monotonicity of the
original language.

A model-checking technique for tccp was formalized in [53], where the constraint nature
of the language was exploited as a means to mitigate the state-explosion problem. In
[3, 4], two optimizations employing symbolic representations and abstract interpretation
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∃̇x φ ∧̇ ◇(¬̇ y = 1)

α

∃̇x φ,◇(¬̇ y = 1)

∃

φ′,◇(¬̇ y = 1)

β

y = 1 ∧̇ ◯x′ = 5 ∧̇ ◯(◻ y = 1),◇(¬̇ y = 1)

α

y = 1,◯x′ = 5,◯(◻ y = 1),◇(¬̇ y = 1)

β

y = 1,◯x′ = 5,

◯(◻ y = 1), ¬̇ y = 1

×

y = 1,◯(◻ y = 1),◯x′ = 5,

(¬̇ y = 1 ∨̇ ¬̇◯(◻ y = 1)) U (¬̇ y = 1)

¬̇ y = 1 ∧̇ ◯ y = 1,◇(¬̇ y = 1)

α

¬̇ y = 1,◯ y = 1,◇(¬̇ y = 1)

β

¬̇ y = 1,◯ y = 1

X

y = 1
⊙

¬̇ y = 1,◯ y = 1,

◯(y = 1 ∨̇ ¬̇◯ y = 1) U(¬̇ y = 1)

Figure 5.3: Tableau for ∃̇x φ →̇ ◻ y = 1 of Example 5.5.16
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were presented, but the effectiveness of the optimizations still depends on the kind of
system (for symbolic representations) or the data-abstraction applied. Moreover, in [52]
tcc programs were represented in terms of graph structures as a previous work to apply
model-checking techniques. These are, to our knowledge, the only adaptation of the
model-checking technique to the ccp paradigm.

In [45, 93], proof systems to reason about correctness of tccp and ntcc programs are
defined. These works use a temporal logic to define the reactive behavior of programs and
to reason about it, but they lack of decision procedures.

5.7 Discussion on the results

In this chapter we have defined an abstract semantics for tccp based on a domain of
linear temporal formulas with constraints (csLTL) which is sound w.r.t. the behavior of
the language.

By using this abstract semantics, we have defined a method to validate csLTL formulas
for tccp programs. Since the abstract semantics cannot be defined by means of a Galois
Connection, we cannot use the abstract diagnosis framework for tccp defined in Section 4.1,
thus we devised (from scratch) a weak version of the abstract diagnosis framework based
only on a concretization function γ. It works by applying Ḋ to the abstract specification
and then by checking the validity of the resulting implications (whether that computation
implies the abstract specification). The computational cost depends essentially on the cost
of that check of the implication.

We have also presented an automatic decision procedure for the csLTL logic in order
to effectively check the validity of that implication.

Differently from the approach presented in [116], we do not need to restrict the lan-
guage to the locally-independent fragment since our semantics is able to deal with the full
language.

It is worth noticing, that this method does not require to build any model at all, while
all the proposals of model checking have in common that a subset of the model of the
(target) program has to be built, and sometimes the needed fragment is quite huge. When
a property is falsified, model checking provides a counterexample in terms of an erroneous
execution trace, leaving to the user the problem of locating the source of the bug. On the
contrary, we identify the faulty process declaration.

With our proposal, we can easily specify a possible intervention coming from a sur-
rounding environment simply by a temporal formula. With model checking, this needs to
be done by simulating such environment in software with an additional set of declarations.

The approach presented in this chapter encompasses the limitations of the instances
presented in the abstract diagnosis formulation of Chapter 4 where the abstract domain
used does not allow to specify temporal properties in a straightforward way. In fact,
specifications consist of sets of abstract conditional traces that are big and onerous to be
written. The use of temporal logic certainly overcomes this problem.

In the future, we plan to explore other instances of the method based on logics for
which decision procedures or (semi)automatic tools exists. This proposal can also be
adapted to other concurrent (non-monotonic) languages (like tcc and ntcc) once a suitable
fully abstract semantics has been developed.
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5.A Proofs

5.A.1 Proofs of Section 5.1

Theorem 5.1.2. Let D ∈ DΠ
C and Sα ∈ IA.

1. If there are no abstractly incorrect process declarations in D (i.e., DαJDKSα ≤ Sα),
then D is partially correct w.r.t. Sα (i.e., F JDK ⊑ γ(Sα)).

2. Let D be partially correct w.r.t. Sα. If D has abstract uncovered elements, then D
is not complete (i.e., γ(Sα) /⊑ F JDK).

Proof of Theorem 5.1.2.

Point 1 By hypothesis, DαJDKSα ≤ Sα. Since γ is monotonic γ(DαJDKSα) ⊑ γ(Sα).
By the soundness of Dα and by transitivity it follows that DJDKγ(Sα) ⊑ γ(Sα). It
can be noticed that γ(Sα) is a pre-fixpoint of DJDK, thus, from Knaster-Tarski’s
theorem it follows directly that lfp DJDK ≤ γ(Sα). The thesis follows directly from
the definition of F JDK (F JDK = lfp DJDK).

Point 2 By hypothesis, e is such that e ≤ DαJDKSα and e ∧DαJDKSα = �. Thus, it
follows that γ(DαJDKSα) ⊓ γ(Sα) = {ε}. Since DJDKγ(Sα) ⊑ γ(DαJDKSα), we have
that DJDKγ(Sα) ⊓ γ(Sα) = {ε}. Suppose that γ(Sα) ⊑ F JDK. Since by hypothesis
F JDK ⊑ γ(Sα), we have that F JDK = γ(Sα). It follows thatDJDKF JDK ⊓F JDK = {ε},
but this is a contradiction since F is a fixpoint. Thus, γ(Sα) ⋢ F JDK and the thesis
holds.

Theorem 5.1.3. Let R be a process declaration for p(x⃗), S ∈ I a concrete specification
and Sα ∈ IA a sound approximation for S (i.e., S ⊑ γ(Sα)).

1. If DJ{R}KS ⋢ γ(Sα) and it exists e such that γ(e) ⊑ DJ{R}KS (p(x⃗)) and e ∧ Sα(p(x⃗)) =
�, then R is abstractly incorrect w.r.t. Sα (on testimony e).

2. If there exists an abstract uncovered element e w.r.t. Sα, then there exists r ∈ γ(e)
such that r ∉ DJ{R}KS (p(x⃗)).

Proof of Theorem 5.1.3.

Point 1 By hypothesis it exists e such that γ(e) ⊑ DJ{R}KS and e ∧ Sα = �. Since
S ⊑ γ(Sα), we have that DJ{R}KS ⊑ DJ{R}Kγ(Sα) and, Since Dα is a sound approx-
imation of D, DJ{R}Kγ(Sα) ⊑ γ(DαJ{R}KSα). The thesis follows directly from the
monotonicity of Dα since e ≤ DαJ{R}KSα .

Point 2 By hypothesis e ∧DαJ{R}KSα = �. By the monotonicity of Dα and since γ is

⊓-distributive, it follows that γ(e) ⊓ γ(DαJ{R}KSα) = {ε}. Since Dα is a sound
approximation of D, DJ{R}Kγ(Sα) ⊑ γ(DαJ{R}KSα) and, since S ⊑ γ(Sα), it follows
that DJ{R}KS ⊑ γ(DαJ{R}KSα). Thus, γ(e) ⊓ DJ{R}KS = {ε} and this means that
there exists r ∈ γ(e) such that r ∉ DJ{R}KS .
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5.A.2 Proofs of Section 5.3

Lemma 5.2.3. The function γF is monotonic and injective.

Proof of Lemma 5.2.3.

γF is monotonic. Let φ1, φ2 ∈ F such that φ1 →̇ φ2. By Definition 5.2.2, for all r ∈ M,
if r ⊧ φ1 then r ⊧ φ2. Thus, ⊔{r ∣ r ⊧ φ1} ⊑ ⊔{r ∣ r ⊧ φ2} and, by Equation (5.2.1),
γF(φ1) ⊑ γ

F(φ2).

γF is injective. Let φ1, φ2 ∈ F such that γF(φ1) = γF(φ2). By Equation (5.2.1) and
Definition 5.2.2, this means that φ1 and φ2 have the same models, thus, φ1 ↔̇ φ2.

Lemma 5.3.3. For each A ∈ AΠ
C and each D ∈ DΠ

C, ȦJAK and ḊJDK are monotonic.

Proof.

Consider A ∈ AΠ
C; we show that for each İ1, İ2 ∈ IF and for each A ∈ AΠ

C, İ1 →̇ İ2 ⇒

ȦJAK
İ1
→̇ ȦJAK

İ2
. Observe that the only case in which Ȧ depends on the interpretation

is the case of the process call. By definition of →̇, İ1(p(x⃗)) →̇ İ2(p(x⃗)), thus:

ȦJp(x⃗)K
İ1

= ◯İ1(p(x⃗)) →̇ ◯ İ2(p(x⃗)) = ȦJp(x⃗)K
İ2

The monotonicity of ḊJDK follows directly from the monotonicity of ȦJAK.

Lemma 5.A.1 Given φ1, φ2 ∈ F, γF(φ1 ∧̇ φ2) ⊒ ⊔{r1 ∥̄ r2 ∣ r1 ∈ γF(φ1), r2 ∈ γF(φ2),
r1 ∥̄ r2 is defined}.

Proof.

Consider r1 ∈ γ
F(φ1) and r2 ∈ γ

F(φ2) such that r1 ∥̄ r2 is defined. We show that r1 ∥̄ r2 ∈

γF(φ1 ∧̇ φ2) (i.e., r1 ∥̄ r2 ⊧ φ1 ∧̇ φ2). Since r1 ∥̄ r2 is defined, the conditions and stores in
r2 cannot be in contradiction with those in r1, thus neither with φ1, which means that
(r1 ∥̄ r2) ⊧ φ1. Following a similar reasoning, we have that (r1 ∥̄ r2) ⊧ φ2 and finally, from
Equation (5.2.2f) we can conclude that (r1 ∥̄ r2) ⊧ φ1 ∧̇ φ2.

Lemma 5.A.2 Given φ ∈ F, γF(∃̇x φ) ⊒ ⊔{∃̄x r ∣ r ∈ γF(φ), r is x-self-sufficient}.

Proof.

Let r ∈ γF(φ) be x-self-sufficient. By Equation (5.2.1) r ⊧ φ, and by Equation (5.2.2g)
it follows directly that ∃̄x r ⊧ ∃̇x φ. By Equation (5.2.1) we can conclude that ∃̄x r ∈

γF(∃̇x φ).

Theorem 5.3.6. Let A ∈ AΠ
C, D ∈ DΠ

C and İ ∈ IF. Then, AJAKγF(İ)
⊑ γF(ȦJAK

İ
) and

DJDKγF(İ)
⊑ γF(ḊJDK

İ
).

Proof.

Let A ∈ AΠ
C and İ ∈ IF, we show that AJAKγF(İ)

⊑ γF(ȦJAK
İ
) by structural induction on

A.
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A = skip

AJskipKγF(İ)
= {(true,∅) ↣ true ⋯ (true,∅) ↣ true ⋯}

[ by Definition 5.2.2 since ⊠ ⊧ true ]

⊑ {r ∣ r ⊧ ˙true}

[ by Equation (5.2.1) ]

= γF( ˙true)

[ by Equation (5.3.1a) ]

= γF(ȦJskipK
İ
)

A = tell(c)

AJtell(c)KγF(İ)
= {(true,∅) ↣ c ⋅ (c,∅) ↣ c ⋯ (c,∅) ↣ c ⋯}

[ by Definition 5.2.2 ]

⊑ {r ∣ r ⊧ ◯ c}

[ by Equation (5.2.1) ]

= γF(◯ c)

[ by Equation (5.3.1b) ]

= γF(ȦJtell(c)K
İ
)

A = ∑n
i=1 ask(ci) →Ai Let r ∈ AJAKγF(İ)

, we have to prove two cases.

1. Let r ∶= stutt({c1, . . . , cn}) . . . stutt({c1, . . . , cn})
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k times

⋅(ci,∅) ↣ ci ⋅ (ri↓ci) with 1 ≤ i ≤

n and ri ∈ AJAiKγF(İ)
.

From (5.2.2c) and (5.2.2e), it follows that stutt({c1, . . . , cn}) ⊧ ¬̇ ci for all 1 ≤ i ≤
n. Thus, by (5.2.2f), for all 1 ≤ j ≤ k rj ⊧ ⋀̇

n
i=1 ¬̇ ci. From (5.2.2c), it follows that

(ci,∅) ↣ ci ⊧ ci, and, by inductive hypothesis, ri ⊧ ȦJAiKİ . Therefore the sub-

trace (ci,∅) ↣ ci⋅(ri↓ci) models the formula ci ∧̇ ◯ȦJAiKİ and as a consequence

models also ⋁̇
n
i=1 (ci ∧̇ ◯ȦJAiKİ). Since this sub-trace is preceded in r by

the suffix stutt({c1, . . . , cn}) . . . stutt({c1, . . . , cn}), from (5.2.2i), it follows that
r ⊧ (⋀̇

n
i=1 ¬̇ ci) U ⋁̇

n
i=1 (ci ∧̇ ◯ȦJAiKİ) and, from (5.3.1c), we can conclude that

r ⊧ ȦJAK
İ
.

2. Let r ∶= stutt({c1, . . . , cn}) ⋯ stutt({c1, . . . , cn}) ⋯. From (5.2.2d) and (5.2.2e)
it follows that
stutt({c1, . . . , cn}) ⊧ ¬̇ ci for all 1 ≤ i ≤ n. Thus, by (5.2.2f), stutt({c1, . . . , cn}) ⊧

⋀̇
n
i=1 ¬̇ ci. Since r is an infinite replication of stutt({c1, . . . , cn}), by definition

of ◻, r ⊧ ◻⋀̇
n
i=1 ¬̇ ci and, by (5.3.1c) we can conclude that r ⊧ ȦJAK

İ
.

A = now c thenA1 elseA2 Let r ∈ AJAKγF(İ)
. We show that:

r ⊧ (c ∧̇ ȦJA1Kİ) ∨̇ (¬̇ c ∧̇ ȦJA2Kİ).

We have to prove seven cases:
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1. Let r ∶= (c,∅) ↣ c ⋯ (c,∅) ↣ c ⋯ such that (true,∅) ↣ true ⋯ (true,
∅) ↣ true ⋯∈ AJA1KγF(İ)

. From (5.2.2c) it follows that r ⊧ c. By inductive

hypothesis, (true,∅) ↣ true ⋯ (true,∅) ↣ true ⋯∈ γF(ȦJA1Kİ). Moreover,
true is the stronger formula that (true,∅) ↣ true ⋯ (true,∅) ↣ true ⋯ can
model. Thus, it follows that true →̇ ȦJA1Kİ . Since ∀φ ∈ csLTL. φ →̇ true ∧̇ φ,

it holds that r ⊧ c ∧̇ ȦJA1Kİ .

2. Let r ∶= (η+⊗c, η−) ↣ d⊗c ⋅(r′↓c) such that (η+, η−) ↣ d ⋅r′ ∈ AJA1KγF(İ)
, d⊗c ≠

false, ∀c− ∈ η−. η+ ⊗ c ⊬ c− and r′ is c-compatible. By (5.2.2c), it follows that
r ⊧ c. By inductive hypothesis, we know that (η+, η−) ↣ d ⋅ r′ ∈ γF(ȦJA1Kİ),
and by (5.2.1), (η+, η−) ↣ d ⋅ r′ ⊧ ȦJA1Kİ . By hypothesis, (η+, η−) ↣ d ⋅ r′ is

compatible with c, thus ȦJA1Kİ cannot contain ¬̇ c. Furthermore, it can be
noticed that r adds to (η+, η−) ↣ d ⋅ r′ only the constraint c in the positive
conditions and in the stores, thus, it follows that r ⊧ ȦJA1Kİ . By (5.2.2f) we

conclude that r ⊧ c ∧̇ ȦJA1Kİ .

3. Let r ∶= (η+ ⊗ c, η−) ↣ false ⋅ (false,∅) ↣ false ⋯ (false,∅) ↣ false ⋯ such that
(η+, η−) ↣ d ⋅ r′ ∈ AJA1KγF(İ)

, d ⊗ c = false, ∀c− ∈ η−. η+ ⊗ c ⊬ c− and r′ is

c-compatible. By (5.2.2c), it follows that r ⊧ c. By inductive hypothesis, (η+,
η−) ↣ d ⋅r′ ∈ γF(ȦJA1Kİ) and, by (5.2.1), (η+, η−) ↣ d ⋅r′ ⊧ ȦJA1Kİ . Reasoning

similarly to Point 2 above, it can be noticed that r ⊧ ȦJA1Kİ . Thus, by (5.2.2f)

we conclude that r ⊧ c ∧̇ ȦJA1Kİ .

4. Let r ∶= (c, η−) ↣ c ⋅(r′↓c) such that stutt(η−)⋅r′ ∈ AJA1KγF(İ)
, ∀c− ∈ η−. η+⊗c ⊬

c− and r′ is c-compatible. It follows from (5.2.2c) that r ⊧ c. By inductive
hypothesis, stutt(η−) ⋅ r′ ∈ γF(ȦJA1Kİ), and, by (5.2.1), stutt(η−) ⋅ r′ ⊧ ȦJA1Kİ .

Reasoning as in Point 2 of this proof it follows that r ⊧ ȦJA1Kİ . Thus, r ⊧

c ∧̇ ȦJA1Kİ .

5. Let r ∶= (true,{c}) ↣ true ⋅ (true,∅) ↣ true ⋯ (true,∅) ↣ true ⋯ such that
(true,∅) ↣ true ⋯ (true,∅) ↣ true ⋯∈ AJA2KγF(İ)

. By (5.2.2c) and (5.2.2e),

r ⊧ ¬̇ c. By inductive hypothesis, (true,∅) ↣ true ⋯ (true,∅) ↣ true ⋯∈

γF(ȦJA2Kİ) and, reasoning as in Point 1 of this proof, it follows that true →̇

ȦJA2Kİ . Since ∀φ ∈ csLTL. φ →̇ true ∧̇ φ, it holds that r ⊧ ¬̇ c ∧̇ ȦJA2Kİ .

6. Let r ∶= (η+, η−∪{c}) ↣ d ⋅r′ such that (η+, η−) ↣ d ⋅r′ ∈ AJA2KγF(İ)
and η+ ⊬ c.

By (5.2.2c), r ⊧ ¬̇ c. By inductive hypothesis, (η+, η−) ↣ d ⋅ r′ ∈ γF(ȦJA2Kİ)
and, by (5.2.1), (η+, η−) ↣ d ⋅ r′ ⊧ ȦJA2Kİ . It can be noticed that ȦJA2Kİ
cannot imply the formula c, otherwise (η+, η−) ↣ d ⋅ r′ would not be a model
for ȦJA2Kİ since by hypothesis η+ ⊬ c. Since r differs from (η+, η−) ↣ d ⋅r′ only

in the presence of c in the first negative condition, it follows that r ⊧ ȦJA2Kİ .

Thus, by (5.2.2f) we conclude that r ⊧ ¬̇ c ∧̇ ȦJA2Kİ .

7. Let r ∶= (true, η− ∪ {c}) ↣ true ⋅ r′ such that stutt(η−) ⋅ r′ ∈ AJA2KγF(İ)
. By

(5.2.2d), r ⊧ ¬̇ c and, by inductive hypothesis, stutt(η−)⋅r′ ⊧ ȦJA2Kİ . Reasoning

as in the previous Point 6 it can be noticed that r ⊧ ȦJA2Kİ and, therefore,

r ⊧ ¬̇ c ∧̇ ȦJA2Kİ .

We have proven that for all r ∈ AJAKγF(İ)
either r ⊧ c ∧̇ ȦJA1Kİ or r ⊧ ¬̇ c ∧̇ ȦJA2Kİ .

Therefore, from (5.3.1d) we conclude that r ⊧ ȦJAK
İ
.
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A =A1 ∥A2 Let r1 ∥̄ r2 ∈ AJA1 ∥ A2KγF(İ)
such that r1 ∈ AJA1KγF(İ)

and r2 ∈ AJA2KγF(İ)
.

By inductive hypothesis, r1 ∈ γF(ȦJA1Kİ) and r2 ∈ γF(ȦJA2Kİ). It follows from

Lemma 5.A.1 that r1 ∥̄ r2 ∈ γ
F(ȦJA1 ∥ A2Kİ).

A = ∃xA1 Let ∃̄x r1 ∈ AJ∃xA1KγF(İ)
such that r1 ∈ AJA1KγF(İ)

and r1 is x-self-sufficient.

By inductive hypothesis, r1 ∈ γF(ȦJA1Kİ) and, by Lemma 5.A.2, it follows that

∃̄x r1 ∈ γ
F(ȦJ∃xA1Kİ).

A = p(x⃗) Let r ∶= (true,∅) ↣ true ⋅ r′ ∈ AJp(x⃗)KγF(İ)
such that r′ ∈ γF(İ(p(x⃗))).

By (5.2.1), it follows that r′ ⊧ İ(p(x⃗)). From (5.2.2h) we can conclude that
r ⊧ ◯İ(p(x⃗)) and, thus, r ∈ γF(ȦJp(x⃗)K

İ
).

Let D ∈ DΠ
C and İ ∈ IF. We prove that DJDKγF(İ)

⊑ γF(ḊJDK
İ
) by showing that for all

p(x) ∶− A ∈D, DJDKγF(İ)
(p(x⃗)) ⊑ γF(ḊJDK

İ
(p(x⃗))).

DJDKγF(İ)
(p(x⃗)) = ⊔

p(x)∶−A∈D

AJAKγF(İ)

[ by the soundness of Ȧ ]

⊑ ⊔
p(x)∶−A∈D

γF(ȦJAK
İ
)

[ by the monotonicity of γF (Lemma 5.2.3) ]

⊑ γF(⋁̇p(x)∶−A∈D ȦJAK
İ
)

= γF(ḊJDK
İ
)(p(x⃗))

5.A.3 Proofs of Section 5.5

In this section we present the proofs of the results presented in Section 5.5 together with
some auxiliary definitions and results which are used in those proofs.

We first show that α- and β-formulas rules and the next operator preserve the satisfi-
ability of a set of formulas.

Lemma 5.5.1. Given a set of formulas Φ, an α-formula α and a β-formula β:

1. Φ ∪ {α} is satisfiable ⇐⇒ Φ ∪A(α) is satisfiable;

2. Φ ∪ {β} is satisfiable ⇐⇒ Φ ∪B1 (β) or Φ ∪B2 (β) is satisfiable;

3. if Φ is a set of elementary formulas, Φ is satisfiable ⇐⇒ next(Φ) is satisfiable;

Proof.
We prove the three points separately.

1. Let us consider the rules for α-formulas in Figure 5.1. Let Φ be a set of formulas, α
an α-formula and φ,φ1, φ2 ∈ csLTL.

R1 Let α = ¬̇ ¬̇φ, this case follows directly from the equivalence ¬̇ ¬̇φ = φ.
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R2 Let α = φ1 ∧̇ φ2, this case follows directly from Definition 5.2.2, in particular
Equation (5.2.2f).

R3 Let α = ¬̇◯φ, this case follows directly from the equivalence ¬̇◯φ = ◯¬̇φ.

2. Let us consider the rules for β-formulas in Figure 5.1. Let Φ be a set of formulas, β
a β-formula and φ1, φ2 ∈ csLTL.

R4 Let β = ¬̇(φ1 ∧̇ φ2). We show the two directions independently.

⇒ Assume that it exists r ∈ M such that r ⊧ Φ ∪ {¬̇(φ1 ∧̇ φ2)}. By applying
De Morgan laws r ⊧ Φ∪{¬̇φ1 ∨̇ ¬̇φ2}. By Definition 5.2.2 it follows directly
that r ⊧ Φ ∪ {¬̇φ1} or r ⊧ Φ ∪ {¬̇φ2}.

⇐ Without lost of generality assume that it exists r ∈ M such that r ⊧ Φ ∪

{¬̇φ1}. It follows that r ⊧ Φ ∪ {¬̇φ1 ∨̇ ¬̇φ2} and by De Morgan laws r ⊧
Φ ∪ {¬̇(φ1 ∧̇ φ2)}.

R5 Let β = ¬̇(φ1 U φ2).

⇒ Assume that it exists r ∈ M such that r ⊧ Φ ∪ {¬̇(φ1 U φ2)}. We build a
model for at least one of the following sets: Φ ∪ {φ1, ¬̇φ2, ¬̇◯(φ1 U φ2)}

and Φ ∪ {¬̇φ1, ¬̇φ2}. We distinguish two cases.
In case r ⊧ φ1, we have r ⊧ Φ ∪ {φ1, ¬̇(φ1 U φ2)}, thus, by the fixpoint
characterization of U , r ⊧ Φ ∪ {φ1, ¬̇(φ2 ∨̇ ◯(φ1 U φ2))}. It can be notice
that ¬̇(φ2 ∨̇ ◯(φ1 U φ2)) = ¬̇φ2 ∧̇ ¬̇◯(φ1 U φ2) and by Definition 5.2.2 it
follows that r ⊧ Φ ∪ {φ1, ¬̇φ2, ¬̇◯(φ1 U φ2)}.
Otherwise, in case r ⊭ φ1, r ⊧ Φ ∪ {¬̇φ1, ¬̇(φ1 U φ2)}. This means that
r ⊧ ¬̇φ1, r ⊧ ¬̇(φ1 U φ2) and r ⊧ Φ. By definition of U it follows that r ⊭ φ2,
otherwise r ⊧ φ1 U φ2 and this contradicts the hypothesis. Therefore,
r ⊧ ¬̇φ1 and r ⊧ ¬̇φ2 and we can conclude that r ⊧ Φ ∪ {¬̇φ1, ¬̇φ2}.

⇐ Assume that it exists r ∈ M such that r ⊧ Φ∪{φ1, ¬̇φ2, ¬̇◯(φ1 U φ2)}. By
definition of U if follows that r ⊭ φ1 U φ2, since φ2 and ◯(φ1 U φ2) are not
modeled by r. Thus, we can conclude that r ⊧ Φ ∪ {¬̇(φ1 U φ2)}.
Now assume that it exists r ∈ M such that r ⊧ Φ ∪ {¬̇φ1, ¬̇φ2}. Since
neither φ1 nor φ2 are not modeled by r, it follows that r ⊭ φ1 U φ2, thus,
r ⊧ Φ ∪ {¬̇(φ1 U φ2)}.

R6 Let β = φ1 U φ2 be an eventuality in the context Φ.

⇒ Assume that it exists r ∈ M such that r ⊧ Φ∪{φ1 U φ2}, we build a model for
at least one of the following sets: Φ∪{φ2} and Φ∪{φ1, ¬̇φ2,◯((Φ∗ ∧̇ φ1) U

φ2)}. Let j ≥ 0 be the least j such that rj ⊧ φ2. If j = 0 then r ⊧ φ2 and
r ⊧ Φ∪{φ2}. Otherwise, if j > 0, then r ⊭ φ2 and, by definition of U , r ⊧ φ1.
Let i be the greatest index such that 0 ≤ i < l and ri ⊧ Φ ∪ {φ1 U φ2}. It
follows that Φ or φ1 U φ2 should not hold in the next time instant. Since φ2

has not be reached yet we have that ri+1 ⊧ φ1 U φ2, thus, at least one φ ∈ Φ
should not be modeled by ri+1. It follows that ri ⊧ ◯((Φ∗ ∧̇ φ1) U φ2).

⇐ We have to distinguish two cases. Assume that it exists r ∈ M such that
r ⊧ Φ ∪ {φ2}, thus, r ⊧ Φ ∪ {φ1 U φ2}.
Otherwise assume that it exists r ∈ M such that r ⊧ Φ ∪ {◯((Φ∗ ∧̇ φ1) U

φ2), φ1, ¬̇φ2}. Since r ⊧ ◯((Φ∗ ∧̇ φ1) U φ2) we have that r ⊧ ◯(φ1 U φ2).
Thus, by definition of U we conclude that r ⊧ Φ ∪ {φ1 U φ2}.
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3. Consider the set Φ = {c1, . . . , cn,◯φ1, . . . ,◯φm, ¬̇◯ψ1, . . . , ¬̇◯ψk}, with c1, . . . , cn ∈
C and φ1, . . . , φm, ψ1, . . . , ψk ∈ csLTL. We show the two directions independently.

⇒ Assume that it exists r ∈ M such that r ⊧ Φ. Let us recall that r1 is the suffix of
r obtained by deleting the first element of r. By Definition 5.2.2 it follows that
r ⊧ ci for i = 1 . . . n, r ⊧ ◯φj for j = 1 . . .m and r ⊭ ◯ψl for l = 1 . . . k. From
monotonicity of r it follows that r1 ⊧ ci for i = 1 . . . n. Moreover, by (5.2.2h),
r1 ⊧ φj for j = 1 . . .m and r1 ⊭ ψl for l = 1 . . . k. Thus it follows directly that
r1 ⊧ next(Φ).

⇐ Now assume that it exists r ∈ M such that r ⊧ next(Φ). Consider C ∶= c1⊗⋅ ⋅ ⋅⊗cn.
It is easy to notice that r′ ∶= (C,∅) ↣ C ⋅ r is a monotone and consistent
conditional trace, otherwise r(1) ⊭ c and r ⊭ next(Φ). We show that (C,
∅) ↣ C ⋅ r is a model for Φ. By definition of C, is easy to notice that (C,
∅) ↣ C ⊧ ci for i = 1 . . . n. Furthermore, by (5.2.2h), (C,∅) ↣ C ⋅ r ⊧ ◯φj for
j = 1 . . .m and r ⊭ ψl for l = 1 . . . k, thus (C,∅) ↣ C ⋅ r ⊭ ¬̇◯ψl. Therefore, (C,
∅) ↣ C ⋅ r ⊧ Φ.

The correctness of the rule for the existential quantification derives from the following
lemma, which shows that ∃̇x φ and φ are equi-satisfiable.

Lemma 5.5.2. Let φ ∈ csLTL, ∃̇x φ is satisfiable ⇐⇒ φ satisfiable.

Proof.

We show the two directions independently.

⇒ This direction follows directly from (5.2.2g).

∃̇x φ satisfiable⇒ it exists r ∈ M. r ⊧ ∃̇x φ

⇒ it exists r′ ∈ M. ∃̄x r
′ = ∃̄x r and r′ ⊧ φ

⇒ φ satisfiable

⇐ Let r be a model for φ, if we remove from r the information regarding x, we obtain
a model r′ ∶= ∃̄x r for ∃̇x φ. Indeed, ∃̄x r = ∃x r (∃ is idempotent) and r ⊧ φ, thus, by
(5.2.2g) r′ ⊧ ∃̇x φ.

Corollary 5.5.3. Let Φ ⊆ csLTL such that x ∈ Var does not appear in Φ and let φ ∈ csLTL.
Then, Φ ∪ {∃̇x φ} is satisfiable ⇐⇒ Φ ∪ {φ} is satisfiable.

Proof.

Follows directly from Lemma 5.5.2. x does not appear in Φ, thus the local variable x of φ
is independent from any other variable in Φ.

In Subsection 5.5.2 we gave the informal definitions of path and stages in a tableau.
In the following we formally define these notions.

Definition 5.A.3 Let b = n0, n1, . . . nk be an open branch such that L(nk) = L(nj) for
0 ≤ j < k, then b is cyclic and we define path(b) = n0, n1, . . . , nj , (nj+1, . . . , nk)

ω.
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Definition 5.A.4 Given a branch b, every maximal subsequence ni, ni+1, . . . nj of path(b)
is called a stage if, for all i ≤ l ≤ j, L(nl) is not formed only by elementary formulas or

L(nl) ≠ next(L(nl−1)). We denote by stages(b) the sequence of the stages in b.

We distinguish a particular class of stages called saturated.

Definition 5.A.5 A stage s is saturated if and only if for every φ ∈ L(s):

• if φ is an α-formula then A(α) ⊆ L(s);

• if φ is an beta-formula then B1 (β) ⊆ L(s) or B2 (β) ⊆ L(s);

• if φ = ∃̇x φ
′ with x ∈ Var and φ′ ∈ csLTL then φ′ ∈ L(s).

Definition 5.A.6 Let TΦ be a tableau and S = s0, s1, . . . , sn be a sequence of stages in TΦ.
Any eventuality φ1 U φ2 ∈ L(si) with 0 ≤ i ≤ n is said to be fulfilled in S if there exists
j ≥ i such that φ2 ∈ L(sj).

Intuitively, the formula is fulfilled in the path if we can reach (following the path) a node
where φ2 is true.

Definition 5.A.7 A sequence of stages S is said to be fulfilling if and only if every even-
tuality occurring in S is fulfilled in S. A branch b is said to be fulfilling if and only if
path(stages(b)) is fulfilling.

Now we give the definition of expanded branch. Open expanded branches correspond
to models of the initial set of formulas.

Definition 5.A.8 An open branch b is expanded if and only if b is fulfilling and each
stage in stages(b) is saturated.

When constructing a tableau only non-expanded open branches are selected to be
enlarged with the rules in Figure 5.1. When all branches are closed or expanded the
tableau cannot be further expanded.

Proposition 5.A.9 Let TΦ be the systematic tableau for Φ, each stage s occurring in TΦ

is saturated.

Proof.
By looking into Definition 5.5.9 it can be noticed that the algorithm applies any possible
α-, β-rule and ∃̇ elimination before applying the next operator to jump to the following
stage.

It can be proven that starting from a finite set of formulas Φ, the set of formulas which
can occur in the construction of the systematic tableau TΦ is finite. This result is the
adaptation to the csLTL case of the corresponding result for PLTL shown in [60].

We denote as clo(Φ) the closure of a set of formulas Φ which contains all the formulas
that can occur in any systematic tableau for Φ.

Let us first introduces some auxiliary sets of formulas which are used in the definition
of clo(Φ).
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We denote as subf (Φ) the set of sub-formulas in Φ and their negations. preclo(Φ)

extends subf (Φ) with the formulas that can be generated from subf (Φ) by means of the
rules in Figure 5.1 (α, β rules and ∃̇ elimination) except Rule R6.

preclo(Φ) ∶= subf (Φ) ∪ {◯(φ1 U φ2), ¬̇◯(φ1 U φ2),◯¬̇(φ1 U φ2) ∣φ1 U φ2 ∈ subf (Φ)}

{◯(¬̇φ) ∣ ¬̇(◯φ) ∈ subf (Φ)} ∪ {φ ∣ ∃̇x φ ∈ subf (Φ)}

clo(Φ) captures the formulas generated by Rule R6 by using negctx(Φ) which represents
the conjunctions of negated contexts introduced by Rule R6.

clo(Φ) ∶={⋀̇∆ ∣ ∆ ⊆ {φ1 ∣φ1 U φ2 ∈ subf (Φ)} ∪ negctx(Φ)}

where negctx(Φ) ∶= {Γ∗ ∣Γ ⊆ preclo(Φ)}

Definition 5.A.10 Let Φ be a set of formulas, the closure of Φ is defined as

clo(Φ) ∶=preclo(Φ) ∪ clo(Φ)

∪ {(φ1 ∧̇ φ2) U ψ,◯((φ1 ∧̇ φ2) U ψ) ∣φ U ψ ∈ subf (Φ) and φ1, φ2 ∈ clo(Φ)}

Proposition 5.A.11 Let Φ ⊆ csLTL be a finite set, then clo(Φ) is also finite.

Proof.
It follows directly from Definition 5.A.10.

The fact that clo(Φ) is finite is not enough to guarantee that the algorithm terminates
in a finite number of steps. It is necessary to assume that the algorithm uses a fair strategy
to distinguish eventualities. this means that no eventuality formula in an open branch can
remain non-distinguished indefinitely. A fair strategy guarantees the termination of the
construction.

Let us recall some significant results shown in [60] about the handling of eventualities
in the construction of the systematic tableau TΦ for a set of formulas Φ.

Proposition 5.A.12 Let s be a stage in a branch b of TΦ, if {φ, ¬̇φ} ⊆ L(s) then every
branch prefixed by b is closed.

Proof.
It can be noticed that the application of the rules in Figure 5.1 to two complementary
formulas belonging to the same stage (but not necessarily to the same node) will generate
two complementary formulas that belong to the same node.

The following proposition states that non-satisfied undistinguished eventualities are
kept in branches at least until they are fulfilled or they become distinguished.

Proposition 5.A.13 Let b be a branch of TΦ and s0, s1, . . . , sk be a prefix of path(stages(b)).
If φ1 U φ2 ∈ L(ni) for some 0 ≤ i ≤ k, φ1 U φ2 is not distinguished in si, . . . , sk and
φ2 /∈ L(si) ∪ ⋅ ⋅ ⋅ ∪ L(sk), then {φ1, ¬̇φ2,◯(φ1 U φ2)} ⊆ L(sj) for all i ≤ j ≤ k.

Proof.
By the construction of TΦ since undistinguished eventualities are handled by Rule R6.
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The following proposition states that if a distinguished eventuality φ1 U φ2 is not
fulfilled in and expanded branch b, then b is closed, since the expansion of φ1 U φ2 by
using Rule R6, is in contradiction with the context.

Proposition 5.A.14 Let b be a branch of TΦ and s0, s1, . . . , sk be a prefix of path(stages(b)).
Consider the eventuality φ1 U φ2, and let i be the least index such that the eventuality
φ1 U φ2 is distinguished in the stage si. If φ2 /∈ L(si) ∪ ⋅ ⋅ ⋅ ∪L(sk) then, for all 0 ≤ l ≤ k − i,
{δl, ¬̇φ2,◯(δl+1 U φ2)} ⊆ L(si+l) where δ0 = φ1 and δl+1 = δl ∧̇ χ for some χ ∈ negctx(Φ).

Moreover, if δl = ⋀̇Γ for some Γ such that χ ∈ Γ, then every maximal branch prefixed
by s0, . . . , si+l is closed.

Proof.

By construction of TΦ, distinguished eventualities are handled by Rule R6. This rule gives
rise to two branches: one containing {γl, ¬̇φ2,◯(γl+1 U φ2)} and the other containing φ2.
If ◯(γl+1 U φ2) is the distinguish eventuality in a successive node n in stage si+l then, in
the next stage, si+l the distinguished eventuality is γl+1 U φ2 in a node n′. By Rule R6,
γ0 = φ1 and for all j > 0 γj = γj−1 ∧̇ ∆∗

j−1 where ∆∗
j−1 ∈ negctx(Φ) and Γj−1 is the context,

L(n) ∖ {◯(γl+1 U φ2)}. Therefore, by induction on l, γl ∈ clo(Φ) for all 0 ≤ l ≤ k − 1.

Moreover we have that χ is the negation of the context of a node in si+l, if δl = ⋀̇Γ for
some Γ such that χ ∈ Γ, then every branch prefixed by s0, . . . , si+l contains at the same
stage two complementary formulas {ψ, ¬̇ψ}. From Proposition 5.A.12 we can conclude
every maximal branch prefixed by s0, . . . , si+l is closed.

Corollary 5.A.15 Every distinguish eventuality in a cyclic branch of TΦ is fulfilled.

Proof.

By Proposition 5.A.14 if a distinguish eventuality in a branch b is unfulfilled, then b is
closed and it is not cyclic.

Proposition 5.A.16 Let b be a branch of TΦ. b is open if and only if one of the following
points holds:

1. the last node of b contains only constraint formulas;

2. b is cyclic and for every eventuality φ ∈ L(n) for a node occurring in b, φ is fulfilled
in b.

Proof.

It follows directly from Point 3 and Point 6a in the algorithm of Definition 5.5.9 and from
Proposition 5.A.12 and Corollary 5.A.15.

Let us recall Lemma 5.5.10.

Lemma 5.5.10. The algorithm of Definition 5.5.9 when using a fair strategy for the
selection of eventualities, given as input a finite set Φ ⊆ csLTL, terminates and builds an
expanded tableau for TΦ.
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Proof.

Suppose that the algorithm does not terminate. This means that TΦ contains an infinite
branch b = n1, n2, . . . , ni . . . . By Propositions 5.A.11, 5.A.14 and 5.A.16 this can happen
only if b contains an eventuality that is never distinguished, which contradicts the fairness
assumption.

The following proposition shows the behavior of negated eventualities. It is needed to
prove completeness.

Proposition 5.A.17 Let b be a branch in the systematic tableau TΦ for Φ ⊆ csLTL, and
let sj be a stage of the path p in the branch (p = path(b)) such that ¬̇(φ1 U φ2) ∈ L(sj).
Then, every finite subsequence of p of the form π = sj , sj+1, . . . , sk satisfies one of the
following properties:

1. {φ1, ¬̇φ2,◯¬̇(φ1 U φ2)} ⊆ L(si) for j ≤ i ≤ k.

2. There exists j ≤ i ≤ k such that {¬̇φ1, ¬̇φ2} ⊆ L(si) and {φ1, ¬̇φ2,◯¬̇(φ1 U φ2)} ⊆

L(sl) for j ≤ l ≤ i − 1.

Proof.

We proceed by induction of k− j. In case k = j the property follows directly from Rule R5
and since each stage of a systematic tableau is saturated (Proposition 5.A.9). In case
k > j, by inductive hypothesis we have that π′ = sj , . . . , sk−1 satisfies one of the two
properties of Proposition 5.A.17. If π′ satisfies Point 1 then by the saturation of the stage
(Proposition 5.A.9) it follows that {φ1, ¬̇φ2, ¬̇(φ1 U φ2)} ⊆ L(sk) or {¬̇φ1, ¬̇φ2} ⊆ L(sk),
thus π verifies Point 1 or Point 2 respectively. Otherwise, if π′ satisfies Point 2 so does
π.

This proposition ensures that, if a node is labeled with a negated eventuality, then
every node in a finite suffix of the path from that node, by construction, does not contain
the second part of the eventuality (φ2).

Given the function stores defined in Subsection 5.5.4, we show that, from a systematic
tableau TΦ built for Φ, we can compute a model for Φ from every open branch b in TΦ.

Lemma 5.5.12. Let b be an open expanded branch in the systematic tableau TΦ for
Φ ⊆ csLTL. Given the sequence of stages S in path(b), then stores(S) ⊧ Φ.

Proof.

Let r ∶= stores(S). To show that r ⊧ Φ, it is sufficient to show that for all φ ∈ Φ, r ⊧ φ.
Note that, by Definition 5.5.9 and by the definition of stores, r contains, at each time
instant, all the constraints in the labeling of the nodes in the corresponding stage. We
proceed by induction on the structure of φ.

• Let φ = c with c ∈ C; Since the first state in r contains c (which we know belongs to
the labels in the first stage), then by the definition of ⊧ (Definition 5.2.2), r ⊧ c.

• Let φ be of one of the following forms ¬̇ ¬̇φ1, φ1 ∧̇ φ2, ¬̇φ1 ∧̇ φ2, ◯φ1, ¬̇◯φ1 or
∃̇x φ1; Since every stage is saturated and by induction hypothesis on {φ1}, {φ1, φ2},
{¬̇φ1, ¬̇φ2}, {φ1}, {¬̇φ1} and {φ1}, respectively, r ⊧ φ.
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• Let φ = φ1 U φ2, since b is an open extended branch, φ is fulfilled in b and, as
a consequence, in path(S). Therefore, it exists a finite subsequence s0, s1, . . . , sn
of path(S) such that φ2 ∈ L(sn) and for all 0 ≤ i < n, φ1 ∈ L(si). By inductive
hypothesis, rn ⊧ φ2 and for all 0 ≤ i < n, ri ⊧ φ1. By (5.2.2i) in Definition 5.2.2, it
follows that r ⊧ φ1 U φ2.

• Let φ = ¬̇(φ1 U φ2) By Proposition 5.A.17 it does not exist a finite subsequence
s0, s1, . . . , sn of path(stages(b)) such that φ2 ∈ L(sn) and for all 0 ≤ i < n, φ1 ∈ L(si).
By inductive hypothesis, it follows that rn ⊭ φ2 or it exists 0 ≤ i < n such that
ri ⊭ φ1. Thus, by (5.2.2i) in Definition 5.2.2 it follows that r ⊭ φ1 U φ2, and by
(5.2.2e) r ⊧ ¬̇(φ1 U φ2).

Theorem 5.5.11. Φ ⊆ csLTL is unsatisfiable if and only if there exists a closed systematic
tableau for Φ.

Proof.
⇒ Suppose that it does not exist a closed tableau for Φ, then the systematic tableau TΦ

would be open. Let b be an open branch of TΦ and S its stages. By Lemma 5.5.12,
stores(path(S)) is a model for Φ, thus Φ is satisfiable.

⇐ Let TΦ be the closed systematic tableau for Φ. This means that the set of formu-
las labeling each leaf is unsatisfiable. By the algorithm in Definition 5.5.9 and by
Lemma 5.5.1, it follows that every node in TΦ is labeled with an unsatisfiable set of
formulas. Thus, Φ is unsatisfiable.



6
Implementation

In this chapter we describe the architecture of the concept prototype that we have devel-
oped, which is available online at URL http://safe-tools.dsic.upv.es/tadi/. This
prototype aims to implement the whole semantics and abstract diagnosis framework for
tccp that was described in this thesis. Particular emphasis has been posed on a modular
and non-replicated development in order to gain maintainability, scalability and extensi-
bility.

The prototype is written in Haskell (see [72, 98] for further details) and developed in
the Glasgow Haskell Compiler (GHC) [99].

Figure 6.1 illustrates the prototype architecture. In the picture, the white modules
are not implemented yet. Thus, our current prototype implements essentially the ap-
proach described in Chapter 5. We preferred to start with that part due to its previously
mentioned advantages w.r.t. the abstract traces approach of Chapter 4.

The tool suite is composed of two main parts:

• the parser suite (written with Alex and Happy) and
• the abstract semantics suite.

In the following, we describe in more detail all the modules of our prototype.

6.1 Parser Suite description

Currently, our parser suite consists of about 7500 lines of code and it has two main parts:

• the tccp(C) parser
• the csLTL(C) parser

Both parsers are defined parametrically over a constraint system C. Thus, their imple-
mentation, in order to parse the constraints, relies on a shared constraint parser module.
The constraint parser takes a syntactic constraint which is an element of a given con-
straint system C and builds a semantic constraint that can be used by the other modules
of the suite. At the moment, we have implemented the parser for a constraint system that
supports different constraints:

• linear disequalities over natural numbers (Constraint System 1.4.3),
• Herbrand constraints (Constraint System 1.4.2) and
• streams ([43]).

http://safe-tools.dsic.upv.es/tadi/


152 6. Implementation

tccp(C)
program

Correctness
Diagnosis

Tableau
Engine

Abstract
Diagnosis

Engine

Abstract 
Semantics

Engine

Abstract Semantics
Module

csLTL(C)
specification

tccp(C)
Parser

csLTL(C)
Parser

Constraint
System C

Parser ot
he

r…

F
in

ite
 D

om
ai

n

Li
ne

ar
 a

nd
 

S
tr

ea
m

s

Abstract 
Domain
Module cs

LT
L

ab
st

ra
ct

 
tr

ac
es

Abstract
Semantics

ot
he

r…

F
in

ite
 D

om
ai

n

Li
ne

ar
 a

nd
 

S
tr

ea
m

s

Constraint
Solver

Parser suite

Abstract Semantics Suite

Figure 6.1: Prototype Architecture Diagram
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⟨Constraint ⟩ ∣ ⟨Constraint ⟩ ∣ ⟨Constraint ⟩
∣ ⟨Constraint ⟩ & ⟨Constraint ⟩
∣ ! ⟨Constraint3 ⟩

∣ ⟨NonVarId ⟩ ( ⟨AExprList ⟩ )
∣ ⟨NonVarId ⟩

∣ ⟨Expr ⟩ = ⟨Expr ⟩
∣ ⟨AExpr ⟩ != ⟨AExpr ⟩
∣ ⟨AExpr ⟩ < ⟨AExpr ⟩
∣ ⟨AExpr ⟩ <= ⟨AExpr ⟩
∣ ⟨AExpr ⟩ > ⟨AExpr ⟩
∣ ⟨AExpr ⟩ >= ⟨AExpr ⟩
∣ ⟨VarId ⟩ :=: ⟨AExpr ⟩

⟨Expr ⟩ ::= ⟨Stream ⟩

∣ ⟨AExpr ⟩

⟨Stream ⟩ ::= [ ⟨AExpr ⟩ ∣ ⟨VarId ⟩ ]

Figure 6.2: BNF grammar for the constraint system

The concrete syntax of the constraints accepted by the parser is illustrated in Figure 6.2.
Here, VarId is a variable identifier, NonVarId is a generic identifier (not for variables) and
AExpr represents an arithmetic expression.

The tccp parser parses a tccp program defined over a given constraint system C. The
concrete syntax of tccp accepted by the parser can be described by means of the BNF
grammars illustrated in Figure 6.3. In this figure, the nonterminal symbol Constraint
represents the syntax of the constraints of the underlying constraint system. Furthermore,
VarId is a variable identifier, VarIdList is a list of variable identifiers, ProcId is a procedure
name identifier and AExprList represents a list of arithmetic expression. As it can be
noticed, we have added some syntactic sugar to write ask(c)^n -> A, instead of writing
n nested agents which denote the repetition of the check ask(c) for n consecutive time
units.

For example, the microwave agent of Example 3.1.24 can be written as:

microwave (Door, Button, Error) :-

hid D,B,E (

tell ( Error = [ _ | E ] )

||

tell ( Door = [ _ | D ] )

||

tell ( Button = [ _ | B ] )

||

now ( Door = [ open | D ] & Button = [pushed | B] )

then hid E1 tell(E = [yes | E1]) || hid B1 tell(B = [off | B1])

else hid E1 tell(E = [no | E1])

||

microwave (D,B,E) ).
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⟨Program ⟩ ::= { ⟨DeclList ⟩ } . ⟨Agent ⟩

⟨DeclList ⟩ ::= ε
∣ ⟨Decl ⟩ . ⟨DeclList ⟩

⟨Decl ⟩ ::= ⟨ProcId ⟩ ( ⟨VarIdList ⟩ ) :− ⟨Agent ⟩
∣ ⟨ProcId ⟩ :− ⟨Agent ⟩

⟨Agent ⟩ ::= ( ⟨Agent ⟩ )
∣ skip

∣ tell ( ⟨Constraint ⟩ )
∣ ⟨Agent ⟩ ∣∣ ⟨Agent ⟩
∣ ⟨ProcId ⟩ ( ⟨AExprList ⟩ )
∣ ⟨ProcId ⟩

∣ ⟨ListAsk ⟩

∣ ⟨TkHiding ⟩ ⟨VarIdList ⟩ ⟨Agent ⟩
∣ now ( ⟨Constraint ⟩ ) then ⟨Agent ⟩ else ⟨Agent ⟩

⟨Ask ⟩ ::= ask ( ⟨Constraint ⟩ ) ⟨OptInt ⟩ −> ⟨Agent ⟩

⟨ListAsk ⟩ ::= ⟨Ask ⟩

∣ ⟨Ask ⟩ + ⟨ListAsk ⟩

⟨OptInt ⟩ ::= ε
∣ ^ ⟨Integer ⟩

⟨TkHiding ⟩ ::= Hid ∣ hid ∣ hiding ∣ local ∣ exists

Figure 6.3: BNF grammar for tccp programs
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The csLTL parser parses a csLTL formula which is parametric w.r.t. a given con-
straint system C. Also the nonstandard temporal LTL operators (such as Weak Until
and Release) are available. The concrete syntax of csLTL accepted by the parser is il-
lustrated in Figure 6.4. As before, the symbol Constraint represents the syntax of the
constraints of the underlying constraint system and the symbol VarIdList represents a
list of variable identifiers. Also in this case, we have added some syntactic sugar to write
formulas of the form “()^n” to denote the repetition of the next operator n times. For
example, suppose that we want to check for the microwave program the csLTL formula
◻(Button=̇pushed →̇ (◯5(Door=̇open) ∨̇ Error=̇yes)). That specification can be written
as:

microwave (Door, Button, Error) :

[] (Button :=: pushed -> (next ^ 5 (Door :=: open) or Error :=: yes))

6.2 Abstract Semantics Suite description

The core of our prototype is the general abstract semantics module that is used to compute
over abstract domains. It is composed by a domain independent part, which is a collection
of functions implementing the abstract semantics evaluation functions for tccp. This part
is parametric to an abstract domain module which in turn relies on a constraint solver.

The abstract domain module contains the structure of the operations and functions
related to a general abstract domain. The specific definitions of the functions for each
abstract domain instance are implemented in the submodules. The same scheme is ap-
plied to the constraint solver. Hence, each submodule implements the specific primitive
functions of a given constraint system.

The abstract semantics suite counts about 3000 lines of code. Let us present in more
details the principal components of this module.

6.2.1 Abstract Semantics Engine

The abstract semantics engine is composed by a collection of functions implementing the
abstract semantics evaluation functions for tccp: Aα, Dα, Fα. This engine is parametric
to an abstract domain module and a constraint solver.

This part is a large set of class declarations layered into different levels of abstraction
(e.g. interpretation level, single interpretation binding level, domain level). The code
that defines the default methods relies on lower level functions which are defined in the
submodules of the abstract domain module. For instance, the agent evaluation function
Aα is defined at the domain independent interpretation level and its definition depends
on the abstract domain and constraint system specific primitives to evaluate the agent
semantics.

6.2.2 Abstract Diagnosis Engine

This part implements the abstract diagnosis functionalities described in Section 4.1 and
Section 5.1. In particular, it implements the detection of abstract incorrect rules and the
generation of a testimony of abstract incorrectness.
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⟨CsLTL ⟩ ::= ⟨Constraint ⟩
∣ ⟨TkTrue ⟩
∣ ⟨TkFalse ⟩
∣ ⟨TkNot ⟩ ⟨CsLTL ⟩

∣ ⟨CsLTL ⟩ ⟨TkOr ⟩ ⟨CsLTL ⟩

∣ ⟨CsLTL ⟩ ⟨TkAnd ⟩ ⟨CsLTL ⟩

∣ ⟨CsLTL ⟩ ⟨TkImplies ⟩ ⟨CsLTL ⟩

∣ ⟨CsLTL ⟩ ⟨TkIsImpliedBy ⟩ ⟨CsLTL ⟩

∣ ⟨CsLTL ⟩ ⟨TkIfAndOnlyIf ⟩ ⟨CsLTL ⟩

∣ ⟨TkExists ⟩ ⟨VarIdList ⟩ ⟨CsLTL ⟩

∣ ⟨CsLTL ⟩ ⟨TkUntil ⟩ ⟨CsLTL ⟩

∣ ⟨CsLTL ⟩ ⟨TkWeakUntil ⟩ ⟨CsLTL ⟩

∣ ⟨CsLTL ⟩ ⟨TkRelease ⟩ ⟨CsLTL ⟩

∣ ⟨TkEventually ⟩ ⟨CsLTL ⟩

∣ ⟨TkAlways ⟩ ⟨CsLTL ⟩

∣ ⟨TkNext ⟩ ⟨OptInt ⟩ ⟨CsLTL ⟩

⟨OptInt ⟩ ::= ε
∣ ^ ⟨Integer ⟩

⟨TkTrue ⟩ ::= True ∣ TRUE

⟨TkFalse ⟩ ::= False ∣ FALSE

⟨TkNot ⟩ ::= !! ∣ not !! ∣ Not !! ∣ NOT

⟨TkOr ⟩ ::= || ∣ or ∣ Or ∣ OR

⟨TkAnd ⟩ ::= /\ ∣ and ∣ And ∣ AND

⟨TkImplies ⟩ ::= -> ∣ implies ∣ Implies ∣ IMPLIES

⟨TkIsImpliedBy ⟩ ::= <- ∣ isimpliedby ∣ IsImpliedBy ∣ ISIMPLIEDBY

⟨TkIfAndOnlyIf ⟩ ::= <-> ∣ iff ∣ Iff ∣ IFF

⟨TkExists ⟩ ::= exists ∣ Exists ∣ EXISTS

⟨TkUntil ⟩ ::= until ∣ Until ∣ UNTIL

⟨TkWeakUntil ⟩ ::= weakuntil ∣ WeakUntil ∣ WEAKUNTIL

⟨TkRelease ⟩ ::= release ∣ Release ∣ RELEASE

⟨TkEventually ⟩ ::= <> ∣ eventually ∣ Eventually ∣ EVENTUALLY

⟨TkAlways ⟩ ::= [] ∣ always ∣ Always ∣ ALWAYS

⟨TkNext ⟩ ::= () ∣ next ∣ Next ∣ NEXT

Figure 6.4: BNF grammar for csLTL formulas
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Most of the methods are defined at the domain independent interpretation level. For
instance, the detection of abstract incorrect rules, which has as input a tccp set of declara-
tions D and an abstractly domain instance α (with its associated parser), depends on the
domain specific primitives for parsing a user defined specification, computing the immedi-
ate consequences of the specification w.r.t. the input program (DαJDKSα), and comparing
the result with the specification.

As illustrated in Figure 6.1 this engine, as well as the abstract semantics one, is para-
metric to an abstract domain module and a constraint solver.

6.2.3 Abstract Domain Module

The abstract domain module implements the primitive operations of an abstract domain:
equivalence, comparison, meet, join, renaming application, etc.

The main module contains just the general scheme, while the specific definitions of the
operations are delegated to the submodules that implement the specific abstract domains of
interest. For each abstract domain submodule it is necessary to define the corresponding
parser which is used by the abstract diagnosis engine to acquire the program abstract
specification.

Currently, we have provided a complete implementation of the csLTL domain (see
Section 5.2). This abstract domain module counts about 1200 lines of code.

Tableau Engine

In order to implement the comparison in the domain of csLTL formulas, we need a way
to decide if a formula φ logically implies another formula ψ (i.e., φ →̇ ψ). Our solution to
this problem is to implement the tableau algorithm of Definition 5.5.9.

Our tableau engine is completely parametric w.r.t. an underlying constraint solver that
is used to detect when a node is inconsistent (Definition 5.5.6) and to add new constraint
formulas to a node through the merge operator ⊗.

The tableau engine consists of about 700 lines of Haskell code.

6.2.4 Constraint Solver

The Abstract Semantics Engine and the Abstract Diagnosis one use a common module
that implements the constraint solver of the underlying constraint system C. This module
implements the basic operations of a constraint system: entailment relation, comparison,
merge, join, cylindrification, etc..

At the moment, we have already implemented a constraint solver for linear disequalities
constraints, Herbrand constraints and streams. This solver consists of about 700 lines of
code.

6.3 TADi: a Temporal Abstract Diagnosis Tool

TADi is a tool that implements the abstract diagnosis of tccp programs as described in
Chapter 5. The underlying constraint system is formed by linear disequalities constraints,
Herbrand constraints and streams.
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Our online prototype is available online at URL http://safe-tools.dsic.upv.es/

tadi/.
Figure 6.5 shows a screenshot of the TADi web interface. TADi expects a tccp program

to be verified against a csLTL specification . It is possible to choose one of the predefined
tccp programs by using the pulldown menu, to directly write a tccp program in the text
area, or to modify the predefined ones. The predefined specification can be loaded for the
selected tccp program or chosen by using the pulldown menu. Otherwise it is possible to
write directly in the text area a desired specification or to modify the predefined ones. To
check if the program meets the specification it is sufficient to press the Verify! button.

In the current version, TADi shows as result:

• The message “the process p is correct w.r.t. the specification” if the process respects
the given specification.

• The message “the process p is not correct w.r.t. the specification on testimony
ϕ”, otherwise. In this message, ϕ ∈ csLTL is the explicit testimony of the abstract
incorrectness of p (see Proposition 5.5.14).

6.4 Future Work

In the future, we plan to implement other abstract domain modules, starting from the
abstract conditional traces domain that was defined in Section 4.2. Furthermore, we want
to implement other constraint systems such as the finite domain constraint system (see
Example 4.2.1) or the sign domain constraint system (see Example 4.2.2).

We also plan to instantiate the abstract semantics module in order to obtain a semantic
analysis tool. This tool will compute Dα until a fixpoint is reached, thus it is terminating
for instances over noetherian domains (e.g. depth(k)).

Additionally, we plan to extend it with narrowing and widening operators, two typical
constructions of the abstract interpretation setting, which are mainly used to achieve ter-
mination for non-noetherian domains, but are also frequently used to speedup convergence
for “big” noetherian domains.

Currently, the implementation of the constraint solver is pretty rough. Nevertheless,
the results we obtained until now are quite interesting. We believe that after a refectory
of this module we could get important improvements in terms of efficiency.

http://safe-tools.dsic.upv.es/tadi/
http://safe-tools.dsic.upv.es/tadi/
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Figure 6.5: TADi web interface
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Conclusions

In this thesis we have proposed an abstract interpretation framework for tccp with the
aim of formally debugging and verifying concurrent and reactive systems.

This framework relies on the denotational semantics defined in Chapter 3 which mod-
els exactly the small-step behavior of tccp. We have shown that this semantics also fulfills
some desired requirements that make it suitable to be used in the development of efficient
semantic-based program manipulation techniques: goal-independency, condensed denota-
tion, bottom-up definition and compositionality. To our knowledge, our proposal is the
first fully abstract compositional semantics for a non-deterministic language in the ccp
family which covers the whole language (including non-monotonic behaviors and infinite
computations).

Additionally, we have defined a big-step semantics for tccp (as an abstraction of the
small-step one) and we have shown that it is essentially equivalent to the original input-
output semantics of the language [43]. Moreover, we have proven that it is not possible to
have an enough precise and still correct input-output fixpoint semantics which is defined
only on the information provided by the input/output pairs. This is due to the loss of
synchronization between concurrent processes that happens when the information about
the evolution of the store at each time instant is approximated by input/output pairs.

By using our small-step semantics we have defined two different abstract diagnosis
instances which are able to formally debug and verify tccp programs:

Abstract diagnosis based on constraint system abstractions. In Chapter 4 we have
defined a fully automatic debugging method for tccp programs based on abstract in-
terpretation. This method is parametric w.r.t. an abstract domain (which models
the properties of interest) and a Galois Insertion between the concrete domain of
conditional traces and the abstract one. We have instantiated the method with an
abstract domain composed by compact abstract conditional traces. Therefore, in
our proposal, specifications are compact conditional abstract traces which contain
only approximated information (i.e., approximated constraints). We showed that
this approach is able to deal with the full tccp language and can validate properties
of both finite and infinite computations.

Abstract diagnosis based on temporal formulas. In Chapter 5 we have extended
the abstract diagnosis approach of Chapter 4 in order to obtain more intuitive spec-
ifications. We have defined a new abstract diagnosis framework which is parametric
just to an abstract domain and a concretization function. This method can be used
in general when the abstract function cannot be defined, i.e., the best correct approx-
imation does not exist. We have instantiated this general framework with a domain
formed by linear temporal formulas with constraints. In this way, a specification
for a tccp set of declarations is a temporal logic formula, as in model checking. In
order to make this method automatic we have presented a decision method for the
temporal logic used which is based on the systematic construction of a tableau.
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The most interesting feature of abstract diagnosis is that it can be used with par-
tial specifications and partial programs and works even with non-terminating programs.
Moreover, it does not require the user to provide error symptoms in advance and it is able
to detect and locate multiple errors simultaneously.

Our proposals, does not require to build any model of the target program, but in order
to detect all errors a specification of the program has to be given. As usual when using
abstract semantics, the obtained result guarantees correctness but completeness is lost.
For that reason, the results obtained by using abstract diagnosis can be less precise w.r.t.
the results obtained by using traditional techniques such as model checking. However, all
“visible” errors are assured to be detected, which makes our proposal suitable to be used
to find errors in critical systems.

We have implemented a first prototype of the semantics and abstract diagnosis frame-
work for tccp and the results are very encouraging (Chapter 6). In the immediate future,
we plan to test it with complex tccp programs and compare its results and performance
with other tools.

As future work, we plan to investigate further on applications of our semantics to
obtain novel analysis and verification methods.

Moreover, we plan to adapt the ideas presented in this thesis to define appropriate fully-
abstract semantics for other concurrent languages of the ccp family, such as ntcc, utcc and
tcc. Along these lines, we will be able to straightforwardly adapt the abstract diagnosis
methodology to such languages. These adaptations of the semantics are not immediate,
since these languages have significant differences w.r.t. tccp, but we are confident that the
required effort will be reasonable.
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