1,865 research outputs found

    Energy harvesting based two-way full-duplex relaying network over a Rician fading environment: performance analysis

    Get PDF
    Full-duplex transmission is a promising technique to enhance the capacity of communication systems. In this paper, we propose and investigate the system performance of an energy harvesting based two-way full-duplex relaying network over a Rician fading environment. Firstly, we analyse and demonstrate the analytical expressions of the achievable throughput, outage probability, optimal time switching factor, and symbol error ratio of the proposed system. In the second step, the effect of various parameters of the system on its performance is presented and investigated. In the final step, the analytical results are also demonstrated by Monte Carlo simulation. The numerical results proved that the analytical results and the simulation results agreed with each other.Web of Science68112311

    Linear Precoders for Non-Regenerative Asymmetric Two-way Relaying in Cellular Systems

    Full text link
    Two-way relaying (TWR) reduces the spectral-efficiency loss caused in conventional half-duplex relaying. TWR is possible when two nodes exchange data simultaneously through a relay. In cellular systems, data exchange between base station (BS) and users is usually not simultaneous e.g., a user (TUE) has uplink data to transmit during multiple access (MAC) phase, but does not have downlink data to receive during broadcast (BC) phase. This non-simultaneous data exchange will reduce TWR to spectrally-inefficient conventional half-duplex relaying. With infrastructure relays, where multiple users communicate through a relay, a new transmission protocol is proposed to recover the spectral loss. The BC phase following the MAC phase of TUE is now used by the relay to transmit downlink data to another user (RUE). RUE will not be able to cancel the back-propagating interference. A structured precoder is designed at the multi-antenna relay to cancel this interference. With multiple-input multiple-output (MIMO) nodes, the proposed precoder also triangulates the compound MAC and BC phase MIMO channels. The channel triangulation reduces the weighted sum-rate optimization to power allocation problem, which is then cast as a geometric program. Simulation results illustrate the effectiveness of the proposed protocol over conventional solutions.Comment: 30 pages, 7 figures, submitted to IEEE Transactions on Wireless Communication
    • …
    corecore