21,612 research outputs found

    Full-Duplex MIMO Small-Cell Networks: Performance Analysis

    Full text link
    Full-duplex small-cell relays with multiple antennas constitute a core element of the envisioned 5G network architecture. In this paper, we use stochastic geometry to analyze the performance of wireless networks with full-duplex multiple-antenna small cells, with particular emphasis on the probability of successful transmission. To achieve this goal, we additionally characterize the distribution of the self-interference power of the full-duplex nodes. The proposed framework reveals useful insights on the benefits of full-duplex with respect to half-duplex in terms of network throughput

    On Phase Noise Suppression in Full-Duplex Systems

    Full text link
    Oscillator phase noise has been shown to be one of the main performance limiting factors in full-duplex systems. In this paper, we consider the problem of self-interference cancellation with phase noise suppression in full-duplex systems. The feasibility of performing phase noise suppression in full-duplex systems in terms of both complexity and achieved gain is analytically and experimentally investigated. First, the effect of phase noise on full-duplex systems and the possibility of performing phase noise suppression are studied. Two different phase noise suppression techniques with a detailed complexity analysis are then proposed. For each suppression technique, both free-running and phase locked loop based oscillators are considered. Due to the fact that full-duplex system performance highly depends on hardware impairments, experimental analysis is essential for reliable results. In this paper, the performance of the proposed techniques is experimentally investigated in a typical indoor environment. The experimental results are shown to confirm the results obtained from numerical simulations on two different experimental research platforms. At the end, the tradeoff between the required complexity and the gain achieved using phase noise suppression is discussed.Comment: Published in IEEE transactions on wireless communications on October-2014. Please refer to the IEEE version for the most updated documen

    Distributed Spectral Efficiency Maximization in Full-Duplex Cellular Networks

    Full text link
    Three-node full-duplex is a promising new transmission mode between a full-duplex capable wireless node and two other wireless nodes that use half-duplex transmission and reception respectively. Although three-node full-duplex transmissions can increase the spectral efficiency without requiring full-duplex capability of user devices, inter-node interference - in addition to the inherent self-interference - can severely degrade the performance. Therefore, as methods that provide effective self-interference mitigation evolve, the management of inter-node interference is becoming increasingly important. This paper considers a cellular system in which a full-duplex capable base station serves a set of half-duplex capable users. As the spectral efficiencies achieved by the uplink and downlink transmissions are inherently intertwined, the objective is to device channel assignment and power control algorithms that maximize the weighted sum of the uplink-downlink transmissions. To this end a distributed auction based channel assignment algorithm is proposed, in which the scheduled uplink users and the base station jointly determine the set of downlink users for full-duplex transmission. Realistic system simulations indicate that the spectral efficiency can be up to 89% better than using the traditional half-duplex mode. Furthermore, when the self-interference cancelling level is high, the impact of the user-to-user interference is severe unless properly managed.Comment: 7 pages, 3 figures, accepted in IEEE ICC 2016 - Workshop on Novel Medium Access and Resource Allocation for 5G Network
    • …
    corecore